OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 7 — Jul. 1, 2009
  • pp: 1747–1753

Electromagnetic field interacting with a semi-infinite plasma

M. Apostol and G. Vaman  »View Author Affiliations


JOSA A, Vol. 26, Issue 7, pp. 1747-1753 (2009)
http://dx.doi.org/10.1364/JOSAA.26.001747


View Full Text Article

Enhanced HTML    Acrobat PDF (133 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasmon and polariton modes are derived for an ideal semi-infinite (half-space) plasma by using a general, unifying procedure based on the equation of motion of the polarization and the electromagnetic potentials. Known results are reproduced in a much more direct manner, and new ones are derived. The approach consists of representing the charge disturbances by a displacement field in the positions of the moving particles (electrons). The propagation of an electromagnetic wave in this plasma is treated by using the retarded electromagnetic potentials. The resulting integral equations are solved, and the reflected and refracted fields are computed, as well as the reflection coefficient. Generalized Fresnel relations are thereby obtained for any incidence angle and polarization. Bulk and surface plasmon–polariton modes are identified. As is well known, the field inside the plasma is either damped (evanescent) or propagating (transparency regime), and the reflection coefficient exhibits an abrupt enhancement on passing from the propagating regime to the damped one (total reflection).

© 2009 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(260.2110) Physical optics : Electromagnetic optics
(260.3910) Physical optics : Metal optics

ToC Category:
Physical Optics

History
Original Manuscript: April 20, 2009
Revised Manuscript: May 29, 2009
Manuscript Accepted: May 29, 2009
Published: June 26, 2009

Citation
M. Apostol and G. Vaman, "Electromagnetic field interacting with a semi-infinite plasma," J. Opt. Soc. Am. A 26, 1747-1753 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-7-1747


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874-881 (1957). [CrossRef]
  2. E. A. Stern and R. A. Ferrell, “Surface plasma oscillations of a degenerate electron gas,” Phys. Rev. 120, 130-136 (1960). [CrossRef]
  3. A. Eguiluz and J. J. Quinn, “Hydrodynamic model for surface plasmons in metals and degenerate semiconductors,” Phys. Rev. B 14, 1347-1361 (1976). [CrossRef]
  4. S. DasSarma and J. J. Quinn, “Hydrodynamic model of linear response for a jellium surface: non-retarded limit,” Phys. Rev. B 20, 4872-4882 (1979). [CrossRef]
  5. N. E. Glass and A. A. Maradudin, “Surface plasmons on a large-amplitude grating,” Phys. Rev. B 24, 595-602 (1981). [CrossRef]
  6. S. DasSarma and J. J. Quinn, “Collective excitations in semiconductor superlattices,” Phys. Rev. B 25, 7603-7618 (1982). [CrossRef]
  7. W. L. Schaich and J. F. Dobson, “Excitation modes of neutral jellium slabs,” Phys. Rev. B 49, 14700-14707 (1994). [CrossRef]
  8. G. Link and R. v. Baltz, “Hydrodynamic description of surface plasmons: Nonexistence of the unrestricted half-space solution,” Phys. Rev. B 60, 16157-16163 (1999). [CrossRef]
  9. P. A. Fedders, “Some surface effects in an electron gas,” Phys. Rev. 153, 438-443 (1967). [CrossRef]
  10. P. A. Fedders, “Indirect coupling of photons to the surface plasmons,” Phys. Rev. 165, 580-587 (1968). [CrossRef]
  11. K. L. Kliewer and R. Fuchs, “Collective electronic motion in a metallic slab,” Phys. Rev. 153, 498-512 (1967). [CrossRef]
  12. A. R. Melnyk and M. J. Harrison, “Theory of optical excitation of plasmons in metals,” Phys. Rev. B 2, 835-850 (1970). [CrossRef]
  13. A. A. Maradudin and D. L. Mills, “Effect of spatial dispersion on the properties of a semi-infinite dielectric,” Phys. Rev. B 7, 2787-2810 (1973). [CrossRef]
  14. G. S. Agarwal, “New method in the theory of surface polaritons,” Phys. Rev. B 8, 4768-4779 (1973). [CrossRef]
  15. P. J. Feibelman, “Microscopic calculation of the electromagnetic fields in refraction at the jellium-vacuum interface,” Phys. Rev. B 12, 1319-1336 (1975). [CrossRef]
  16. P. Apell, “The electromagnetic field near a metal surface in the semi-classical infinite barrier model,” Phys. Scr. 17, 535-542 (1978). [CrossRef]
  17. F. J. Garcia-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163-1166 (1996). [CrossRef] [PubMed]
  18. K. Henneberger, “Additional boundary conditions: An historical mistake,” Phys. Rev. Lett. 80, 2889-2892 (1998). [CrossRef]
  19. W.-C. Tan, T. W. Preist and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134-11138 (2000). [CrossRef]
  20. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001). [CrossRef] [PubMed]
  21. F. J. Garcia de Abajo, “Colloquium: Light scattering by particles and hole arrays,” Rev. Mod. Phys. 79, 1267-1290 (2007). [CrossRef]
  22. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  23. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  24. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007). [CrossRef]
  25. S. Raimes, “The theory of plasma oscillations in metals,” Rep. Prog. Phys. 20, 1-37 (1957). [CrossRef]
  26. P. M. Platzman and P. A. Wolff, Waves and Interactions in Solid State Plasmas (Academic, 1973).
  27. D. L. Mills and E. Burstein, “Polaritons: the electromagnetic modes of media,” Rep. Prog. Phys. 37, 817-926 (1974) [CrossRef]
  28. G. Barton, “Some surface effects in the hydrodynamic model of metals,” Rep. Prog. Phys. 42, 963-1016 (1979). [CrossRef]
  29. Bo E. Sernelius, Surface Modes in Physics (Wiley, 2001). [CrossRef]
  30. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic, 2000), pp. 714-715, 6.677; 1,2.
  31. M. Born and E. Wolf, Principles of Optics (Pergamon, 1959).
  32. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  33. L. Landau and E. Lifshitz, Course of Theoretical Physics, Vol. 8, Electrodynamics of Continuous Media (Butterworth-Heinemann, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited