OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 8 — Aug. 1, 2009
  • pp: 1855–1864

Three-dimensional speckle size in generalized optical systems with limiting apertures

Jennifer E. Ward, Damien P. Kelly, and John T. Sheridan  »View Author Affiliations

JOSA A, Vol. 26, Issue 8, pp. 1855-1864 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (418 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Correlation properties of speckle fields at the output of quadratic phase systems with hard square and circular apertures are examined. Using the linear canonical transform and A B C D ray matrix techniques to describe these general optical systems, we first derive analytical formulas for determining axial and lateral speckle sizes. Then using a numerical technique, we extend the analysis so that the correlation properties of nonaxial speckles can also be considered. Using some simple optical systems as examples, we demonstrate how this approach may be conveniently applied. The results of this analysis apply broadly both to the design of metrology systems and to speckle control schemes.

© 2009 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(110.6150) Imaging systems : Speckle imaging

ToC Category:
Coherence and Statistical Optics

Original Manuscript: March 30, 2009
Revised Manuscript: June 22, 2009
Manuscript Accepted: June 22, 2009
Published: July 29, 2009

Jennifer E. Ward, Damien P. Kelly, and John T. Sheridan, "Three-dimensional speckle size in generalized optical systems with limiting apertures," J. Opt. Soc. Am. A 26, 1855-1864 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. K. Rastogi, “Techniques of displacement and deformation Measurements in speckle metrology,” in Speckle Metrology, R.S.Sirohi, ed. (Marcel Dekker, 1993), pp. xx-xx.
  2. H. Tiziani, “A study of the use of laser speckle to measure small tilts of optically rough surfaces accurately,” Opt. Commun. 5, 271-274 (1972). [CrossRef]
  3. J. T. Sheridan and R. Patten, “Holographic interferometry and the fractional Fourier transformation,” Opt. Lett. 25, 448-450 (2000). [CrossRef]
  4. D. P. Kelly, B. M. Hennelly, and J. T. Sheridan, “Magnitude and direction of motion with speckle correlation and the optical fractional Fourier transform,” Appl. Opt. 44, 2720-2727 (2005). [CrossRef] [PubMed]
  5. B. M. Hennelly, D. P. Kelly, J. E. Ward, R. Patten, U. Gopinathan, F. T. O'Neill, and J. T. Sheridan, “Metrology and the linear canonical transform,” J. Mod. Opt. 53, 2167-2186 (2006). [CrossRef]
  6. T. Fricke-Begemann, “Three-dimensional deformation field measurement with digital speckle correlation,” Appl. Opt. 42, 6783-6796 (2003). [CrossRef] [PubMed]
  7. T. Yoshimura, M. Zhou, K. Yamahai, and Z. Liyan, “Optimum determination of speckle size to be used in electronic speckle pattern interferometry,” Appl. Opt. 34, 87-91 (1995). [CrossRef] [PubMed]
  8. J. W. Goodman, Speckle Phenomena in Optics (Roberts, 2007).
  9. S. A. Collins, Jr., “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168-1177 (1970). [CrossRef]
  10. S. Abe and J. T. Sheridan, “Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation,” Opt. Lett. 9, 1801-1803 (1994). [CrossRef]
  11. R. S. Hansen, H. T. Yura, and S. G. Hanson, “First-order speckle statistics: an analytic analysis using ABCD matrices,” J. Opt. Soc. Am. A 14, 3093-3098 (1997). [CrossRef]
  12. L. I. Goldfischer, “Autocorrelation function and power spectral density of laser-produced speckle patterns,” J. Opt. Soc. Am. 55, 247-253 (1965). [CrossRef]
  13. L. Leushacke and M. Kirchner, “Three-dimensional correlation coefficient of speckle intensity for rectangular and circular apertures,” J. Opt. Soc. Am. A 7, 827-832 (1990). [CrossRef]
  14. H. T. Yura, S. G. Hanson, R. S. Hansen, and B. Rose, “Three-dimensional speckle dynamics in paraxial optical systems,” J. Opt. Soc. Am. A 16, 1402-1412 (1999). [CrossRef]
  15. D. P. Kelly, J. E. Ward, U. Gopinathan, and J. T. Sheridan, “Controlling speckle using lenses and free space,” Opt. Lett. 32, 3394-3396 (2007). [CrossRef] [PubMed]
  16. J. C. Dainty, “The statistics of speckle patterns,” in Progress in Optics, Vol. XIV, E.Wolf, ed. (North-Holland, Amsterdam, 1976).
  17. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).
  18. B. R. A. Nijboer, “The diffraction theory of optical aberrations: II. Diffraction pattern in the presence of small aberrations,” Physica (Utrecht) 13, 605-620 (1947). [CrossRef]
  19. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1970).
  20. T. Yoshimura and S. Iwamoto, “Dynamic properties of three-dimensional speckles,” J. Opt. Soc. Am. A 10, 324-328 (1993). [CrossRef]
  21. E. W. Weisstein, “ANOVA,” in MathWorld, A Wolfram Web Resource; http://mathworld.wolfram.com/ANOVA.html (July 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited