OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 8 — Aug. 1, 2009
  • pp: 1896–1900

Radiative properties of optically thick fluorescent turbid media

Alexander A. Kokhanovsky  »View Author Affiliations

JOSA A, Vol. 26, Issue 8, pp. 1896-1900 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (104 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper simple analytical equations for the reflection and transmission coefficients of fluorescent turbid media are given. The case of weakly absorbing optically thick media is considered (e.g., paper, textiles, tissues). The calculations are performed in the framework of the two-flux approximation for finite layers under monochromatic illumination conditions. The relationships of Kubelka–Munk parameters to the true absorption and transport extinction coefficients of fluorescent turbid media are derived. The results can be used for the development of various optimization procedures in the paper and textile industries and also in the area of fluorescence spectroscopy of turbid media.

© 2009 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(170.1610) Medical optics and biotechnology : Clinical applications
(260.1560) Physical optics : Chemiluminescence
(260.2510) Physical optics : Fluorescence

ToC Category:
Physical Optics

Original Manuscript: January 21, 2009
Revised Manuscript: April 17, 2009
Manuscript Accepted: June 15, 2009
Published: July 30, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Alexander A. Kokhanovsky, "Radiative properties of optically thick fluorescent turbid media," J. Opt. Soc. Am. A 26, 1896-1900 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. H. Morton, “Fluorescent brightening agents on textiles: elementary optical theory and its practical applications,” J. Soc. Dyers Colour. 79, 238-242 (1959). [CrossRef]
  2. E. Allen, “Fluorescent white dyes: calculation of fluorescence from reflectivity values,” J. Opt. Soc. Am. 54, 506-515 (1964). [CrossRef]
  3. L. Fukshansky and N. Kazarinova, “Extension of the Kubelka-Munk theory of light propagation in intensely scattering materials to fluorescent media,” J. Opt. Soc. Am. 70, 1101-1111 (1980). [CrossRef]
  4. T. Shakespeare, “Colorant modeling for on-line paper coloring: evaluations of models and an extension to Kubelka-Munk model,” Ph.D. thesis (Tampere University of Technology, 2000).
  5. J. Wu, M. S. Feld, and R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585-3595 (1993). [CrossRef] [PubMed]
  6. A. D. Klose and A. H. Hielscher, “Fluorescence tomography with simulated data based on the equation of radiative transfer,” Opt. Lett. 28, 1019-1021 (2003). [CrossRef] [PubMed]
  7. H. R. Gordon, “Diffuse reflectance of the ocean: the theory of its augmentation by chlorophyll a fluorescence at 685 nm,” Appl. Opt. 18, 5356-5367 (1979).
  8. A. D. Klose, “Radiative transfer of luminescence light in biological tissue,” in Light Scattering Reviews, A.A.Kokhanovsky, ed. (Springer-Praxis, 2009), Vol. 4, 347-405.
  9. M. G. I. Muller, I. Georgakoudi, Q. Zhang, J. Wu, and M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt. 40, 4633-4646 (2001). [CrossRef]
  10. Q. Zhang, M. G. Muller, J. Wu, and M. S. Feld, “Turbidity-free fluorescence spectroscopy of biological tissue,” Opt. Lett. 25, 1451-1453 (2000). [CrossRef]
  11. J. Swartling, A. Pifferi, A. M. K. Enejder, and S. Anderson-Engels, “Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues,” J. Opt. Soc. Am. 20, 714-727 (2003). [CrossRef]
  12. P. Kubelka and F. Munk, “Ein Beitrag Zur Optik der Farbanstriche,” Z. fur Techn. Physik 12, 593-601 (1931).
  13. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  14. P. Kubelka, “New contributions to the optics of intensely light-scattering materials. Part I,” J. Opt. Soc. Am. 38, 448-457 (1948). [CrossRef] [PubMed]
  15. P. Kubelka, “New contributions to the optics of intensely light-scattering materials. Part II: Nonhomogeneous layers,” J. Opt. Soc. Am. 44, 330-335 (1954). [CrossRef]
  16. T. Shakespeare and J. Shakespeare, “A fluorescent extension to the Kubelka-Munk model,” Color Res. Appl. 28, 4-14 (2002). [CrossRef]
  17. S. D. Howison and R. J. Lawrence, “Fluorescent transfer of light in dyed materials,” SIAM J. Appl. Math. 53, 447-458 (1993). [CrossRef]
  18. L. E. Elsgolts, Differential Equations (Gordon & Breach, 1961).
  19. A. A. Kokhanovsky, Cloud Optics (Springer, 2006). [CrossRef]
  20. A. A. Kokhanovsky, “Physical interpretation and accuracy of the Kubelka-Munk theory,” J. Phys. D 40, 2210-2216 (2007). [CrossRef]
  21. A. A. Kokhanovsky, Light Scattering Media Optics (Springer-Praxis, 2004).
  22. A. A. Kokhanovsky, “Asymptotic radiative transfer,” in Light Scattering Reviews, A.A.Kokhanovsky, ed. (Springer-Praxis, 2006), Vol. 1, pp. 253-290. [CrossRef]
  23. P. S. Mudgett and L. W. Richards, “Multiple scattering calculations for technology,” Appl. Opt. 10, 1485-1502 (1971). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited