OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 8 — Aug. 1, 2009
  • pp: A1–A10

Extended active tunable optical lattice filters enabled by four-dimensional couplers: systems modeling

Amr El Nagdi, Louis R. Hunt, Duncan L. MacFarlane, and Viswanath Ramakrishna  »View Author Affiliations


JOSA A, Vol. 26, Issue 8, pp. A1-A10 (2009)
http://dx.doi.org/10.1364/JOSAA.26.0000A1


View Full Text Article

Enhanced HTML    Acrobat PDF (1247 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A system theoretic model of a unit cell of a two-dimensional tunable lattice filter architecture consisting of four 4-port couplers and four waveguides containing semiconductor optical amplifiers is provided. It is shown that such multiple input–multiple output devices can be modeled in state space and by transfer function matrices. This modeling can also be extended to devices constructed by concatenations of the basic building block, the unit cell.

© 2009 Optical Society of America

OCIS Codes
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(130.3120) Integrated optics : Integrated optics devices
(070.2025) Fourier optics and signal processing : Discrete optical signal processing
(070.5753) Fourier optics and signal processing : Resonators
(070.7145) Fourier optics and signal processing : Ultrafast processing

History
Original Manuscript: January 8, 2009
Manuscript Accepted: March 30, 2009
Published: June 9, 2009

Citation
Amr El Nagdi, Louis R. Hunt, Duncan L. MacFarlane, and Viswanath Ramakrishna, "Extended active tunable optical lattice filters enabled by four-dimensional couplers: systems modeling," J. Opt. Soc. Am. A 26, A1-A10 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-8-A1


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. L. MacFarlane, J. Tong, C. Fafadia, V. Govindan, L. R. Hunt, and I. Panahi, “Extended lattice filters enabled by four directional couplers,” Appl. Opt. 43, 6124-6133 (2004). [CrossRef] [PubMed]
  2. G. Grieffel, “Synthesis of optical filters using ring resonator arrays,” IEEE Photon. Technol. Lett. 12, 810-812 (2000). [CrossRef]
  3. D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90 hybird on LiNb03,” J. Lightwave Technol. 7, 794-798 (1989). [CrossRef]
  4. D. Roh, T. Masood, S. Patterson, N. V. Amarasinghe, S. McWilliams, G. A. Evans, and J. Butler, “Dual-wavelength AlInGaAs-InP grating-outcoupled surface-emitting laser with an integrated two-dimensional photonic lattice outcoupler,” IEEE Photon. Technol. Lett. 17, 270-273 (2005). [CrossRef]
  5. T. Constantinescu, V. Ramakrishna, N. Spears, L. R. Hunt, J. Tong, I. Panahi, G. Kannan, D. L. MacFarlane, G. A. Evans, and M. P. Christensen, “Composition methods for four-port couplers in photonic integrated circuitry,” J. Opt. Soc. Am. A 23, 2919-2931 (2006). [CrossRef]
  6. B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, “Fiber optic lattice signal processing,” Proc. IEEE 72, 909-930 (1984). [CrossRef]
  7. F. J. Fraile-Peláez, J. Capmany, and M. A. Muriel, “Transmission bistability in a double-coupler fiber ring resonator,” Opt. Lett. 16, 907-909 (1991). [CrossRef] [PubMed]
  8. K. Sasayama, M. Okuno, and K. Habara, “Coherent optical transversal filter using silica-based waveguides for high speed signal processing,” J. Lightwave Technol. 9, 1225-1230 (1991). [CrossRef]
  9. D. L. MacFarlane and E. M. Dowling, “Z-domain techniques in the analysis of Fabry-Perot etalons and multilayer structures,” J. Opt. Soc. Am. A 11, 236-245 (1994). [CrossRef]
  10. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).
  11. L. R. Hunt, V. Govindan, I. Panahi, J. Tong, G. Kannan, D. L. MacFarlane, and G. A. Evans, “Active optical lattice filters,” EURASIP J. Appl. Signal Process. 10, 1-11 (2005).
  12. I. Panahi, G. Kannan, L. R. Hunt, D. L. MacFarlane, and J. Tong, “Lattice filter with adjustable gains and its applications in optical signal processing,” 2005 IEEE/SP 13th Workshop on Statistical Signal Processing (IEEE Press, 2005), pp. 321-326. [CrossRef]
  13. J. G. Proakis and D. Manolakis, Digital Signal Processing, Principles, Algorithms and Applications (Prentice Hall, 1996).
  14. J. Makhoul, “Stable and efficient lattice methods for linear prediction,” IEEE Trans. Acoust., Speech, Signal Process. ASSP-25, 423-428 (1977). [CrossRef]
  15. J. Makhoul, “A class of all-zero lattice digital filters: Properties and applications,” IEEE Trans. Acoust., Speech, Signal Process. ASSP-26, 304-314 (1978). [CrossRef]
  16. A. H. Gray, Jr., “Passive cascaded lattice digital filters,” IEEE Trans. Circuits Syst. CAS-27, 337-344 (1980). [CrossRef]
  17. E. M. Dowling and D. L. MacFarlane, “Lightwave lattice filters for optically multiplexed communication systems,” J. Lightwave Technol. 12, 471-486 (1994). [CrossRef]
  18. R. Nagarajan, C. H. Joyner, R. P. Schneider, Jr., J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kato, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, R. H. Miles, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, S. C. Pennypacker, J. L. Pleumeekers, R. A. Salvatore, R. K. Schlenker, R. B. Taylor, H. S. Tsai, M. F. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 50-65 (2005). [CrossRef]
  19. R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, Jr., A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400 Gbit/s (10 channel 40 Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41, 1-2 (2005). [CrossRef]
  20. R. Nagarajan, M. Kato, C. H. Joyner, R. P. Schneider Jr., J. Back, A. G. Dentai, T. Desikan, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “Wide temperature (2585 C) coolerless operation of 100 Gbits DWDM photonic integrated circuit,” Electron. Lett. 41, 1-2 (2005). [CrossRef]
  21. J. Tong, K. Wade, D. L. MacFarlane, S. McWilliams, G. A. Evans, and M. P. Christensen, “Active integrated photonic true time delay device,” IEEE Photon. Technol. Lett. 18, 1720-1722 (2006). [CrossRef]
  22. Y. Li, C. Henry, E. Laskowski, C. Mak, and H. Yaffe, “Waveguide EDFA gain equalization filter,” Electron. Lett. 31, 2005-2006 (1995). [CrossRef]
  23. D. L. MacFarlane, E. M. Dowling, and V. Narayan, “Ring resonators with NM couplers,” Fiber Integr. Opt. 14, 195-210 (1995). [CrossRef]
  24. C. T. Chen, Linear System Theory and Design (Oxford U. Press, 1999).
  25. N. R. Huntoon, M. P. Christensen, D. L. MacFarlane, G. A. Evans, and C. S. Yeh, “Integrated photonic coupler based on frustrated total internal reflection,” Appl. Opt. 47, 5682-5690 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited