OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 8 — Aug. 1, 2009
  • pp: A11–A20

High-speed and low-power electro-optical DSP coprocessor

Dan E. Tamir, Natan T. Shaked, Peter J. Wilson, and Shlomi Dolev  »View Author Affiliations

JOSA A, Vol. 26, Issue 8, pp. A11-A20 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (362 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A fast, power-efficient electro-optical vector-by-matrix multiplier (VMM) architecture is presented. Careful design of an electrical unit supporting high-speed data transfer enables this architecture to overcome bottlenecks encountered by previous VMM architectures. Based on the proposed architecture, we present an electro-optical digital signal processing (DSP) coprocessor that can achieve a significant speedup of 2–3 orders of magnitude over existing DSP technologies and execute more than 16 teraflops. We show that it is feasible to implement the system using off-the-shelf components, analyze the performance of the architecture with respect to primitive DSP operations, and detail the use of the new architecture for several DSP applications.

© 2009 Optical Society of America

OCIS Codes
(200.0200) Optics in computing : Optics in computing
(200.2610) Optics in computing : Free-space digital optics
(200.3050) Optics in computing : Information processing
(200.4560) Optics in computing : Optical data processing
(200.4960) Optics in computing : Parallel processing

Original Manuscript: January 4, 2009
Revised Manuscript: June 1, 2009
Manuscript Accepted: June 5, 2009
Published: July 29, 2009

Dan E. Tamir, Natan T. Shaked, Peter J. Wilson, and Shlomi Dolev, "High-speed and low-power electro-optical DSP coprocessor," J. Opt. Soc. Am. A 26, A11-A20 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Rairigh, “Limits of CMOS technology scaling and technologies beyond-CMOS,” http://www.drlock.com/papers/cmos_survey.pdf.
  2. G. G. Shahidi, “Evolution of CMOS technology at 32 nm and beyond,” in Proceedings of the IEEE Custom Integrated Circuits Conference (IEEE, 2007), pp. 413-416.
  3. H. Iwai, “CMOS technology after reaching the scale limits,” in Proceedings of the IEEE-EDS 8th International Workshop on Junction Technology (IEEE, 2008), pp. 2-3.
  4. B. Razavi, “Prospects of CMOS technology for high-speed optical communication circuits,” IEEE J. Solid-State Circuits 37, 1135-1145 (2002). [CrossRef]
  5. Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-GHz mesh interconnect for a teraflops processor,” Nat. Phys. 27, 51-61 (2007).
  6. A. Goren, S. Sariel, Y. Levit, S. Assaf, S. Liberman, B. Sender, T. Tzelnick, Y. Hefetz, E. Moses, and V. Machal, “Vector-matrix multiplication,” U.S. Patent No. 2004/0243657 A1, December 2, 2004.
  7. N. T. Shaked, S. Messika, S. Dolev, and J. Rosen, “Optical solution for bounded NP-complete problems,” Appl. Opt. 46, 711-724 (2007). [CrossRef] [PubMed]
  8. N. T. Shaked, T. Tabib, G. Simon, S. Messika, S. Dolev, and J. Rosen, “Optical binary-matrix synthesis for solving bounded NP-complete combinatorial problems,” Opt. Eng. (Bellingham) 46, 108201:1-11 (2007). [CrossRef]
  9. S. Dolev and Y. Nir, “Optical implementation of bounded non-deterministic Turing machines,” U.S. Patent No. 7, 130,093 B2, October 31, 2006.
  10. S. Dolev and H. Fitoussi, “The traveling beams optical solutions for bounded NP-complete problems,” in Proceedings of the Fourth International Conference on Fun with Algorithms (FUN2007), LNCS 4475 (Springer LNCS, 2007), pp. 120-134.
  11. V. Oppenheim and R. W. Schafer, Discrete Time Signal Processing, 2nd ed. (Prentice Hall, 1999).
  12. J. Bier, Buyers Guide to DSP Processors, 2005 ed. (Berkeley Design Technology, 2006).
  13. Texas Instruments C64 performance benchmarks,” http://focus.ti.com/dsp/docs/dspplatformscontentaut.tsp?sectionId=2&familyId=477&tabId=496.
  14. S. Eisenbach, “Optical signal processing practical implementation and applications,” Lenslet Marketing Presentation (Lenslet, 2003). http://www.acreo.se/upload/Publications/Proceedings/OE03/LENSLET-OE2003.pdf.
  15. “Laboratory directed research and development program--FY 2006 Annual Report” (Oak Ridge National Labs, 2006). http://ornl.gov/adm/ldrd/FY2006/LDRD_FY2006.pdf.
  16. J. Barhen and N. Imam, “Sensor data processing for tracking underwater threats using terascale optical core devices,” in Harbor Protection Through Data Fusion Technologies, E.Shahbazian, G.Rogova, and M.J.DeWeert, eds. (Springer, 2009), pp. 267-282. [CrossRef]
  17. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  18. D. Psaltis, D. Casasent, and M. Carlotto, “Iterative color-multiplexed, electro-optical processor,” Opt. Lett. 4, 348-350 (1979). [CrossRef] [PubMed]
  19. D. Casasent, “Acousto-optic transducers in iterative optical vector-matrix processors,” Appl. Opt. 21, 1859-1865 (1982). [CrossRef] [PubMed]
  20. R. A. Athale, W. C. Collins, and P. D. Stilwell, “High accuracy matrix multiplication with outer product optical processor,” Appl. Opt. 22, 368-370 (1983). [CrossRef] [PubMed]
  21. D. G. Feitelson, Optical Computing: A Survey for Computer Scientists (MIT Press, 1988).
  22. D. McAulay, Optical Computer Architectures: The Application of Optical Concepts to Next Generation Computers (Wiley-Interscience, 1991). [PubMed]
  23. M. A. Karim and A. A. S. Awwal, Optical Computing: An Introduction (Wiley, 1992).
  24. K. W. Hodapp and D. N. B. Hall, “Introduction to detectors: possible status in 2010-2020,” in Proceedings of the International Astronomical Union (Cambridge Univ. Press, 2005), Vol. 1, pp. 40-51. [CrossRef]
  25. A. El Gamal and H. Eltoukhy, “CMOS image sensors,” IEEE Circuits Devices Mag. 21, 6-20 (2005). [CrossRef]
  26. J. Dubois, D. Ginhac, M. Paindavoine, and B. Heyrman, “A 10,000 fps CMOS sensor with massively parallel image processing,” IEEE J. Solid-State Circuits 43, 706-717 (2008). [CrossRef]
  27. A. Mambu, J. M. Bussat, M. West, B. C. Seller, M. Watanabe, and A. W. Kay, “An ultrahigh-speed one-dimensional detector for use in synchrotron radiation spectroscopy: first photoemission results,” J. Electron Spectrosc. Relat. Phenom. 137, 691-697 (2004). [CrossRef]
  28. T. Wallis, “Testing and characterization of image sensors at RAL,” Ph.D. dissertation (The University of Surrey, Department of Physics, 2008).
  29. L. Mengxiong, “5 GHz optical front end in 0:35 mm CMOS,” Ph.D. dissertation (The University of Nottingham, Department of Physics, 2007).
  30. I. T. Young, J. J. Gerbrands, and L. J. van Vliet, Fundamentals of Image Processing (Delft University of Technology, 2005).
  31. M. Blacksell, J. Wach, D. Anderson, J. Howard, S. M. Collis, B. D. Blackwell, D. Andruczyk, and B. James, “Imaging photomultiplier array with integrated amplifiers and high-speed USB interface,” Rev. Sci. Instrum. 79, 10F506:1-4 (2008). [CrossRef]
  32. Multi anode photomultiplier tubes” (Hamamatsuhttp://sales.hamamatsu.com/multianode) (2009).
  33. “Dalsa image sensor solutions,” http://www.dalsa.com/sensors/, and http://www.dalsa.com/sensors/Products/custom.aspx (2009).
  34. I. Hehemann, W. Brockherde, H. Hofmann, A. Kemna, and B. J. Hosticka, “A single chip optical CMOS detector with in-situ demodulating and integrating readout for next-generation optical storage systems,” IEEE J. Solid-State Circuits 39, 629-635 (2004). [CrossRef]
  35. M. Gschwind, “Chip multiprocessing and the cell broadband engine,” IBM Research Report RC2931 (IBM, 2006).
  36. International Technology Roadmap for Semiconductors; Assembly and Packaging (ITRS, 2005). [PubMed]
  37. J. Wolf and J. Adams, 2005 Packaging Roadmap Overview (The International Electronics Manufacturing Initiative, INEMI, 2005).
  38. D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina, C. Miao, J. Brown, and A. Agrawal, “On-chip interconnection architecture of the tilera processor,” Nat. Phys. 27, 15-31 (2007).
  39. J. Kim, I. Verbauwhede, and M. F. Chang, “Design of an interconnect architecture and signaling technology for parallelism in communication,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 15, 881-894 (2007). [CrossRef]
  40. F. Mederer, R. Jager, H. J. Unold, R. Michalzik, P. Schnitzer, D. Wiedenmann, and K. Ebeling, “3-Gb/s data transmission with GaAs VCSELs over PCB integrated polymer waveguides,” IEEE Photon. Technol. Lett. 13, 1032-1034 (2001). [CrossRef]
  41. T. Hino, R. Kuribayashi, Y. Hashimoto, T. Sugimoto, J. Ushioda, J. Sasaki, I. Ogura, I. Hatakeyama, and K. Kurata, “A 10 Gbps×12 channel pluggable optical transceiver for high-speed interconnections,” in Proceedings of the IEEE Electronic Components and Technology Conference (IEEE, 2008), pp. 1838-1843.
  42. “Infiniband technology overview,” http://www.infinibandta.org/about/.
  43. T. H. Wood, E. C. Carr, C. A. Burrus, J. E. Henry, A. C. Gossard, and J. H. English, “High-speed 2×2 electrically driven spatial light modulator made with GaAs/AlGaAs multiple quantum wells (MQWs),” Electron. Lett. 23, 916-917 (1987). [CrossRef]
  44. 850 NM 4.25 G VCSEL LC TOSA, JDSU, www.jdsu.com/product-literature/pl-slx-00-sg0-cx_ds_cc_ae.pdf.
  45. Lasermate Group, Inc. “VSCEL data sheets,” http://www.lasermate.com/VCA1XNA1G.html.
  46. P. N. Singh, A. Kumar, C. Debnath, and R. Malik, “20 mW, 125 Msps, 10 bit pipelined ADC in 65 nm standard digital CMOS process,” in Proceedings of the IEEE Custom Integrated Circuits Conference (IEEE, 2007), pp. 189-192.
  47. M. H. Zarifi, J. Frounchi, S. Asgarifar, M. B. Nia, and F. A. Dehkhoda, “High speed low power analog to digital converter for biomedical application,” in Proceedings of Canadian Conference on Electrical and Computer Engineering (IEEE Canada, 2008), pp. 1269-1272. [CrossRef]
  48. “125 Msps14-bit wideband ADC,” Linear Technology, http://www.linear.com/.
  49. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and R. C. Stein, Introduction to Algorithms, 2nd ed. (MIT Press, 2001).
  50. “Basic local alignment search tool (BLAST),” http://www.ncbi.nlm.nih.gov/blast/Blast.cgi.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited