OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 8 — Aug. 1, 2009
  • pp: A21–A39

All-optical linear reconfigurable logic with nonlinear phase erasure

Moshe Nazarathy, Zeev Zalevsky, Arkady Rudnitsky, Bar Larom, Amir Nevet, Meir Orenstein, and Baruch Fischer  »View Author Affiliations


JOSA A, Vol. 26, Issue 8, pp. A21-A39 (2009)
http://dx.doi.org/10.1364/JOSAA.26.000A21


View Full Text Article

Enhanced HTML    Acrobat PDF (1217 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a novel all-optical logic architecture whereby the gates may be readily reconfigured to reprogram their logic to implement (N)AND/(N)OR/X(N)OR. A single gate structure may be used throughout the logic circuit to implement multiple truth tables. The reconfiguration is effected by an optical reference signal. The reference may also be adapted to an arbitrary Boolean complex alphabet at the gate logic inputs and calibrated to correct gate imperfections. The all-optical gate structure is partitioned into a linear interferometric front end and a nonlinear back end. In the linear section, two optical logic inputs, along with a reference signal, linearly interfere. The nonlinear back end realizes a phase-erasure (or phase-reset) function. The reconfiguration and recalibration capabilities, along with the functional decoupling between the linear and nonlinear sections of each gate, facilitate the potential aggregation of large gate counts into logic arrays. A fundamental lower bound for the expended energy per gate is derived as 3 h ν + k T ln 2   Joules per bit.

© 2009 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(130.3750) Integrated optics : Optical logic devices
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(200.4740) Optics in computing : Optical processing
(200.6715) Optics in computing : Switching

History
Original Manuscript: December 2, 2008
Revised Manuscript: May 15, 2009
Manuscript Accepted: May 31, 2009
Published: July 29, 2009

Citation
Moshe Nazarathy, Zeev Zalevsky, Arkady Rudnitsky, Bar Larom, Amir Nevet, Meir Orenstein, and Baruch Fischer, "All-optical linear reconfigurable logic with nonlinear phase erasure," J. Opt. Soc. Am. A 26, A21-A39 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-8-A21


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode non-linear waveguide,” IEEE J. Quantum Electron. 38, 37-46 (2002). [CrossRef]
  2. M. Pecciantu, C. Conti, G. Assanto, A. D. Luca, and U. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335-3337 (2002). [CrossRef]
  3. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74-76 (2002). [CrossRef]
  4. G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “All optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323-1325 (1993). [CrossRef]
  5. M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506-2508 (2003). [CrossRef] [PubMed]
  6. S. F. Preble, V. R. Almeida, and M. Lipson, “Optically controlled photonic crystal nanocavity in silicon,” Proc. SPIE 5511, 10-17 (2004). [CrossRef]
  7. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081-1084 (2004). [CrossRef] [PubMed]
  8. O. Limon, A. Rudnitsky, Z. Zalevsky, M. Nathan, L. Businaro, D. Cojoc, and A. Gerardino, “All-optical nano modulator on a silicon chip,” Opt. Express 15, 9029-9039 (2007). [CrossRef] [PubMed]
  9. L. Brzozowski and E. H. Sargent, “All-optical analog-to digital converters, hardlimiters and logic gates,” J. Lightwave Technol. 19, 114-119 (2001). [CrossRef]
  10. J. H. Lee, T. Tsuritani, H. Guo, S. Okamoto, N. Yoshikane, and T. Otani, “Field trial of GMPLS-controlled all-optical networking assisted with optical performance monitors,” in Optical Fiber Communication Conference (OFC) 2008, OSA Technical Digest (CD) (OSA, 2008), pp. 1-3. [CrossRef]
  11. Shacham, K. Bergman, and L. P. Carloni, “On the design of a photonic network-on-chip,” in Proceedings of the First International Symposium on Networks-on-Chip, 2007 (NOCS 2007) (IEEE, 2007), pp. 53-64. [CrossRef]
  12. K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. Quantum Electron. 14, 938-945 (2008). [CrossRef]
  13. R. Landauer, “Irreversibility and heat generation in the computing process,” IBM J. Res. Dev. 5, 183-191 (1961). [CrossRef]
  14. D. Winkel and F. Proser, The Art of Digital Design (Prentice-Hall, 1980).
  15. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O'Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 1567-1570 (2008). [CrossRef]
  16. A. Gupta, K. Tsutsumi, and J. Nakayama, “Synthesis of Hadamard transformers by use of multimode interference optical waveguides,” Appl. Opt. 42, 2730-2738 (2003). [CrossRef] [PubMed]
  17. Z. Zalevsky, A. Rudnitsky, and M. Nathan, “Nano photonic and ultra fast all-optical processing modules,” Opt. Express 13, 10272-10284 (2005). [CrossRef] [PubMed]
  18. I. T. Monroy, F. Öhman, K. Yvind, L. J. Christiansen, J. Mørk, C. Peucheret, and P. Jeppesen, “Monolithically integrated reflective SOA-EA carrier remodulator for broadband access nodes,” Opt. Express 14, 8060-8064 (2006). [CrossRef]
  19. M. Van der Poel, J. Mørk, A. Somers, A. Forchel, J. P. Reithmaier, and G. Eisenstein, “Ultrafast gain and index dynamics of quantum dash structures emitting at 1.55 μm,” Appl. Phys. Lett. 89, 081102 (2006). [CrossRef]
  20. F. Öhman, S. Bischoff, B. Tromborg, and J. Mørk, “Noise and regeneration in semiconductor waveguides with saturable gain and absorption,” IEEE J. Quantum Electron. 40, 245-255 (2004). [CrossRef]
  21. H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, “EA-modulator-based optical time division multiplexing/demultiplexing technique for 160-Gb/s optical signal transmission,” IEEE J. Sel. Top. Quantum Electron. 13, 70-78 (2007). [CrossRef]
  22. E. Tangdiongga, Y. Liu, H. de Waardt, G. D. Khoe, A. M. J. Koonen, and H. J. S. Dorren, “All-optical demultiplexing of 640to40 Gbit/s using filtered chirp of a semiconductor optical amplifier,” Opt. Lett. 32, 835-837 (2007). [CrossRef] [PubMed]
  23. A. Sharaiha, H. W. Li, F. Marchese, and J. Le Bihan, “All-optical logic NOR gate using a semiconductor laser amplifier,” Electron. Lett. 33, 323-325 (1997). [CrossRef]
  24. J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photonics Technol. Lett. 2514, 1436-1438 (2002).
  25. H. Dong, Q. Wang, G. Zhu, J. Jaques, A. B. Piccirilli, and N. K. Dutta, “Demonstration of all-optical logic OR gate using semiconductor optical amplifier-delayed interferometer,” Opt. Commun. 242, 479-485 (2004). [CrossRef]
  26. S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, J. M. Jeon, S. Lee, and D. H. Woo, “All-optical NAND gate using cross gain modulation in semiconductor optical amplifiers,” Electron. Lett. 41, 1027-1028 (2005). [CrossRef]
  27. A. Sharaiha, J. Topomondzo, and P. Morel, “All-optical logic AND-NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Commun. 265, 322-325 (2006). [CrossRef]
  28. T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863-1864 (2000). [CrossRef]
  29. R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39, 79-81 (2003). [CrossRef]
  30. K. Chan, C.-K. Chan, L. K. Chen, and F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photonics Technol. Lett. 16, 897-899 (2004). [CrossRef]
  31. Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 18, 1341-1343 (2006). [CrossRef]
  32. H. Soto, C. A. Díaz, J. Topomondzo, D. Erasme, L. Schares, and G. Guekos, “All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 14, 498-500 (2002). [CrossRef]
  33. H. Soto, J. D. Topomondzo, D. Erasme, and M. Castro, “All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier,” Opt. Commun. 218, 243-247 (2003). [CrossRef]
  34. D. J. Moss and B. J. Eggleton, “Towards photonic integrated circuit all-optical signal processing based on Kerr nonlinearities,” in Advances in Information Optics and Photonics, Vol. VI, A.T.Friberg and R.Dändliker, eds. (SPIE Press, 2008). [CrossRef]
  35. C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, and A. E. Willner, “All-optical XOR gate based on Kerr effect in single highly-nonlinear fiber,” in Conference on Lasers and Electro-Optics (CLEO) 2004, OSA Technical Digest (CD) (OSA, 2004), Vol. 2, p. 3.
  36. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “40 Gbit/s XOR and AND gates using polarisation switching within 1 m-long bismuth oxide-based nonlinear fibre,” Electron. Lett. 41, 1074-1075 (2005). [CrossRef]
  37. T. T. Ng, J. L. Blows, and B. J. Eggleton, “In-band OSNR and chromatic dispersion monitoring using a fibre optical parametric amplifier,” Opt. Express 13, 5542-5552 (2005). [CrossRef] [PubMed]
  38. T. Luo, C. Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, “All-optical chromatic dispersion monitoring by measuring the XPM-generated optical tone power in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 18, 430-432 (2006). [CrossRef]
  39. S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber,” IEEE Photonics Technol. Lett. 15, 957-959 (2003). [CrossRef]
  40. M. Rochette, J. L. Blows, and B. J. Eggleton, “3R optical regeneration: An all-optical solution with BER improvement,” Opt. Express 14, 6414-6427 (2006). [CrossRef] [PubMed]
  41. R. Jiang, R. E. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. E. Ford, Y. Fainman, and S. Radic, “Continuous-wave band translation between the near-infrared and visible spectral ranges,” J. Lightwave Technol. 25, 58-66 (2007). [CrossRef]
  42. K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photonics Technol. Lett. 18, 1046-1048 (2006). [CrossRef]
  43. J. H. Lee and K. Kikuchi, “All fiber-based 160-Gbit/s add/drop multiplexer incorporating a 1-m-long Bismuth Oxide-based ultra-high nonlinearity fiber,” Opt. Express 13, 6864-6869 (2005). [CrossRef] [PubMed]
  44. A. Siegman, Lasers (University Science Books, 1986).
  45. K. Hinton, P. M. Farrell, and R. S. Tucker, “The photonic bottleneck,” in Optical Fiber Communication Conference (OFC) 2007, OSA Technical Digest (CD) (OSA, 2007), paper OThl1. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited