OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 9 — Sep. 1, 2009
  • pp: 1907–1914

General interference law for nonstationary, separable optical fields

Vladimir Manea  »View Author Affiliations


JOSA A, Vol. 26, Issue 9, pp. 1907-1914 (2009)
http://dx.doi.org/10.1364/JOSAA.26.001907


View Full Text Article

Enhanced HTML    Acrobat PDF (156 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An approach to the theory of partial coherence for nonstationary optical fields is presented. Starting with a spectral representation, a favorable decomposition of the optical signals is discussed that supports a natural extension of the mathematical formalism. The coherence functions are redefined, but still as temporal correlation functions, allowing the obtaining of a more general form of the interference law for partially coherent optical signals. The general theory is applied in some relevant particular cases of nonstationary interference, namely, with quasi-monochromatic beams of different frequencies and with phase-modulated quasi-monochromatic beams of similar frequency spectra. All the results of the general treatment are reducible to the ones given in the literature for the case of stationary interference.

© 2009 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.6600) Coherence and statistical optics : Statistical optics
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(250.4110) Optoelectronics : Modulators

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: May 22, 2009
Revised Manuscript: July 5, 2009
Manuscript Accepted: July 6, 2009
Published: August 10, 2009

Citation
Vladimir Manea, "General interference law for nonstationary, separable optical fields," J. Opt. Soc. Am. A 26, 1907-1914 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-9-1907


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Wolf, “Optics in terms of observable quantities,” Nuovo Cimento 12, 884-888 (1954). [CrossRef]
  2. E. Wolf, “A macroscopic theory of interference and diffraction of light from finite sources. I. Fields with a narrow spectral range,” Proc. R. Soc. London 225, 96-111 (1954). [CrossRef]
  3. E. Wolf, “A macroscopic theory of interference and diffraction of light from finite sources. II. Fields with a spectral range of arbitrary width,” Proc. R. Soc. London 230, 246-265 (1955). [CrossRef]
  4. A. Blanc-Lapierre and P. Dumontet, “La notion de la coherence en optique,” Rev. Opt., Theor. Instrum. 34, 1-21 (1955).
  5. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).
  6. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1986).
  7. P. Hariharan, Optical Interferometry, 2nd ed. (Academic, 2003).
  8. J. Zheng, Optical Frequency-Modulated Continuous-Wave (FMCW) Interferometry (Springer-Verlag, 2005).
  9. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002). [CrossRef]
  10. P. Corkum and Z. Chang, “The attosecond revolution,” Opt. Photonics News 19, 24-29 (2008). [CrossRef]
  11. F. Fischer, “Interferenz von Licht verschiedener Frequenz,” Zeitschrift für Physik 199, 541-557 (1967). [CrossRef]
  12. G. G. Brătescu and T. Tudor, “On the coherence of disturbances of different frequencies,” J. Opt. (Paris) 12, 59-64 (1981). [CrossRef]
  13. T. Tudor, “Intensity waves in multifrequency optical fields,” Optik (Stuttgart) 100, 15-20 (1995).
  14. T. Tudor, “Coherent multifrequency optical fields,” J. Phys. Soc. Jpn. 73, 76-85 (2004). [CrossRef]
  15. W. Mark, “Spectral analysis of the convolution and filtering of non-stationary stochastic processes,” J. Sound Vib. 11, 19-63 (1970). [CrossRef]
  16. J. H. Eberly and K. Wódkiewicz, “The time-dependent physical spectrum of light,” J. Opt. Soc. Am. 67, 1252-1261 (1977). [CrossRef]
  17. R. Gase and J. Schubert, “On the determination of spectral properties of non-stationary radiation,” J. Mod. Opt. 29, 1331-1347 (1982). [CrossRef]
  18. M. Bertolotti, A. Ferrari, and L. Sereda, “Coherence properties of nonstationary polychromatic light sources,” J. Opt. Soc. Am. B 12, 341-347 (1995). [CrossRef]
  19. M. Bertolotti, L. Sereda, and A. Ferrari, “Application of the spectral representation of stochastic processes to the study of nonstationary light radiation: a tutorial,” Pure Appl. Opt. 6, 153-171 (1997). [CrossRef]
  20. L. Sereda, M. Bertolotti, and A. Ferrari, “Coherence properties of nonstationary light wave fields,” J. Opt. Soc. Am. A 15, 695-705 (1998). [CrossRef]
  21. H. Lajunen, J. Tervo, J. Turunen, P. Vahimaa, and F. Wyrowski, “Spectral coherence properties of temporally modulated stationary light sources,” Opt. Express 11, 1894-1899 (2003). [CrossRef] [PubMed]
  22. W. A. Gardner, A. Napolitano, and L. Paura, “Cyclostationarity: half a century of research,” Signal Process. 86, 639-697 (2006). [CrossRef]
  23. B. J. Davis, “Observable coherence theory for statistically periodic fields,” Phys. Rev. A 76, 043843-1-14 (2007). [CrossRef]
  24. R. W. Schoonover, B. J. Davis, and P. S. Carney, “The generalized Wolf shift for cyclostationary fields,” Opt. Express 17, 4705-4711 (2009). [CrossRef] [PubMed]
  25. P. Vahimaa and J. Turunen, “Independent-elementary-pulse representation for non-stationary fields,” Opt. Express 14, 5007-5012 (2006). [CrossRef] [PubMed]
  26. P. Vahimaa and J. Turunen, “Finite-elementary-source model for partially coherent radiation,” Opt. Express 14, 1376-1381 (2006). [CrossRef] [PubMed]
  27. A. T. Friberg, H. Lajunen, and V. Torres-Company, “Spectral elementary coherence-function representation for partially coherent light pulses,” Opt. Express 15, 5160-5165 (2007). [CrossRef] [PubMed]
  28. S. A. Ponomarenko, G. P. Agrawal, and E. Wolf, “Energy spectrum of a nonstationary ensemble of pulses,” Opt. Lett. 29, 394-396 (2004). [CrossRef] [PubMed]
  29. T. Tudor, “Polarization waves as observable phenomena,” J. Opt. Soc. Am. A 14, 2013-2020 (1997). [CrossRef]
  30. O. V. Angelsky, N. N. Dominikov, P. P. Maksimyak, and T. Tudor, “Experimental revealing of polarization waves,” Appl. Opt. 38, 3112-3117 (1999). [CrossRef]
  31. O. V. Angelsky, S. B. Yermolenko, C. Yu. Zenkova, and A. O. Angelskaya, “On polarization manifestations of correlation (intrinsic coherence) of optical fields,” Appl. Opt. 47, 5492-5499 (2008). [PubMed]
  32. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312, 263-267 (2003). [CrossRef]
  33. T. Setala, J. Tervo, and A. T. Friberg, “Stokes parameters and polarization contrasts in Young's interference experiment,” Opt. Lett. 31, 2208-2210 (2006). [CrossRef] [PubMed]
  34. T. Setala, J. Tervo, and A. T. Friberg, “Contrasts of Stokes parameters in Young's interference experiment and electromagnetic degree of coherence,” Opt. Lett. 31, 2669-2671 (2006). [CrossRef] [PubMed]
  35. R. A. Silverman, “Locally stationary random processes,” IRE Trans. Inf. Theory 3, 182-187 (1957). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited