OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 9 — Sep. 1, 2009
  • pp: 1954–1960

Simulation method for non-Gaussian speckle in a partially coherent system

Dongyel Kang and Tom D. Milster  »View Author Affiliations

JOSA A, Vol. 26, Issue 9, pp. 1954-1960 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (571 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Non-Gaussian speckle contrast from a phase-perturbed random object field in a spatially partially coherent system is simulated. A quasi-monochromatic extended incoherent source is modeled as a collection of independent point sources distributed on a regular grid. The source illuminates a phase screen object in a Kohler configuration. Speckle is calculated from the incoherent sum of irradiances in the image plane generated from the point sources. Simulated speckle contrasts are verified by an experiment with a fractallike rough surface distribution that is fabricated using a grayscale maskless lithography tool. Characteristics of the simulation method and physical quantities affecting speckle contrast are discussed.

© 2009 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(110.6150) Imaging systems : Speckle imaging
(290.5890) Scattering : Scattering, stimulated

ToC Category:
Coherence and Statistical Optics

Original Manuscript: March 27, 2009
Revised Manuscript: July 13, 2009
Manuscript Accepted: July 14, 2009
Published: August 17, 2009

Dongyel Kang and Tom D. Milster, "Simulation method for non-Gaussian speckle in a partially coherent system," J. Opt. Soc. Am. A 26, 1954-1960 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Dainty, A. E. Ennos, M. Francon, J. W. Goodman, T. S. McKechnie, and G. Parry, Laser Speckle and Related Phenomena (Springer-Verlag, 1984).
  2. J. W. Goodman, Speckle Phenomena in Optics (Roberts, 2007).
  3. H. Fujii and T. Asakura, “Effect of the point spread function on the average contrast of image speckle patterns,” Opt. Commun. 21, 80-84 (1977). [CrossRef]
  4. H. Fujii and T. Asakura, “A contrast variation of image speckle intensity under illumination of partially coherent light,” Opt. Commun. 12, 32-38 (1974). [CrossRef]
  5. T. S. McKechnie, “Image-plane speckle in partially coherent illumination,” Opt. Quantum Electron. 8, 61-67 (1976). [CrossRef]
  6. H. M. Pedersen, “Theory of speckle dependence on surface roughness,” J. Opt. Soc. Am. 66, 1204-1210 (1976). [CrossRef]
  7. D. G. Voelz, K. A. Bush, and P. S. Idell, “Illumination coherence effects in laser-speckle imaging: modeling and experimental demonstration,” Appl. Opt. 36, 1781-1788 (1997). [CrossRef] [PubMed]
  8. H. Ohtsubo and T. Asakura, “Measurement of surface roughness properties using speckle patterns with non-Gaussian statistics,” Opt. Commun. 25, 315-319 (1978). [CrossRef]
  9. P. J. Chandley and H. M. Escamilla, “Speckle from a rough surface when the illuminated region contains few correlation areas: the effect of changing the surface height variance,” Opt. Commun. 29, 151-154 (1979). [CrossRef]
  10. D. L. Jordan, R. C. Hollins, and E. Jakeman, “Experimental measurements of non-Gaussian scattering by a fractal diffuser,” Appl. Phys. B: Photophys. Laser Chem. 31, 179-186 (1983). [CrossRef]
  11. E. Jakeman, “Speckle statistics with a small number of scatterers,” Opt. Eng. (Bellingham) 23, 453-461 (1984).
  12. J. Uozumi and T. Asakura, “The first-order statistics of partially developed non-Gaussian speckle patterns,” J. Opt. 12, 177-186 (1981). [CrossRef]
  13. B. M. Levine, “Non-Gaussian speckle caused by thin phase screens of large root-mean-square phase variations and long single-scale autocorrelations,” J. Opt. Soc. Am. A 3, 1283-1292 (1986). [CrossRef]
  14. E. Jakeman and P. N. Pussy, “Significance of K distribution in scattering experiments,” Phys. Rev. Lett. 40, 546-550 (1978). [CrossRef]
  15. R. Barakat, “Weak-scatterer generalization of the K-density function with application to laser scattering in atmospheric turbulence,” J. Opt. Soc. Am. A 3, 401-409 (1986). [CrossRef]
  16. L. Weng, J. M. Reid, P. Mohana Shankar, and K. Soetanto, “Ultrasound speckle analysis based on the K distribution,” J. Acoust. Soc. Am. 89, 2992-2995 (1991). [CrossRef] [PubMed]
  17. I. A. Popov, N. V. Sidorovsky, and L. M. Veselov, “Experimental study of intensity probability density function in the speckle pattern formed by a small number of scatterers,” Opt. Commun. 97, 304-306 (1993). [CrossRef]
  18. P. K. Murphy, J. P. Allebach, and N. C. Gallagher, “Effect of optical aberrations on laser speckle,” J. Opt. Soc. Am. A 3, 215-222 (1986). [CrossRef]
  19. D. Kang, E. Clarkson, and T. D. Milster, “Effect of optical aberrations on Gaussian laser speckle,” Opt. Express 17, 3084-3100 (2009). [CrossRef] [PubMed]
  20. I. A. Popov, N. V. Sidorovsky, and L. M. Veselov, “Statistical properties of non-Gaussian intensity fluctuations in the image plane of an optical system,” Opt. Commun. 134, 289-300 (1997). [CrossRef]
  21. K. A. Stetson, “The vulnerability of speckle photography to lens aberrations,” J. Opt. Soc. Am. 67, 1587-1590 (1977). [CrossRef]
  22. R. D. Bahuguna, K. K. Gupta, and K. Singh, “Study of laser speckles in the presence of spherical aberration,” J. Opt. Soc. Am. 69, 877-882 (1979). [CrossRef]
  23. R. D. Bahuguna, K. K. Gupta, and K. Singh, “Speckle patterns of weak diffusers: effect of spherical aberration,” Appl. Opt. 19, 1874-1878 (1980). [CrossRef] [PubMed]
  24. A. Majumdar and C. L. Tien, “Fractal characterization and simulation of rough surfaces,” Wear 136, 313-327 (1990). [CrossRef]
  25. J. Krim, I. Heyvaert, C. Van Haesendonck, and Y. Bruynseraede, “Scanning tunneling microscopy observation of self-affine fractal roughness in ion-bombarded film surfaces,” Phys. Rev. Lett. 70, 57-60 (1993). [CrossRef] [PubMed]
  26. M. V. Berry, “Diffractals,” J. Phys. A 12, 781-797 (1979). [CrossRef]
  27. E. Jakeman, “Fresnel scattering by a corrugated random surface with fractal slope,” J. Opt. Soc. Am. 72, 1034-1041 (1982). [CrossRef]
  28. E. Marx, J. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, and J. C. Stover, “Power spectral densities: A multiple technique study of different Si wafer surface,” J. Vac. Sci. Technol. B 20, 31-41 (2002). [CrossRef]
  29. E. L. Church and P. Z. Takacs, “The optimal estimation of finish parameters,” Proc. SPIE 1530, 71-85 (1991). [CrossRef]
  30. G. Palasantzas, “Roughness spectrum and surface width of self-affine fractal surfaces via the K-correlation model,” Phys. Rev. B 48, 14472-14478 (1993). [CrossRef]
  31. H. N. Yang, Y. P. Zhao, A. Chan, T. M. Lu, and G. C. Wang, “Sampling-induced hidden cycles in correlated random rough surfaces,” Phys. Rev. B 56, 4224-4232 (1997). [CrossRef]
  32. E. Jakeman and J. G. McWhirter, “Non-Gaussian scattering by a random phase screen,” Appl. Phys. B: Photophys. Laser Chem. 26, 125-131 (1981). [CrossRef]
  33. B. M. Levine and J. C. Dainty, “Non-Gaussian image plane speckle: Measurements from diffusers of known statistics,” Opt. Commun. 45, 252-257 (1983). [CrossRef]
  34. J. M. Tamkin, B. Bagwell, B. Kimbrough, G. Jabbour, and M. Descour, “High speed gray scale laser direct write technology for micro-optic fabrication,” Proc. SPIE 4984, 210-218 (2003). [CrossRef]
  35. J. Ohtsubo and T. Asakura, “Statistical properties of speckle intensity variations in the diffraction field under illumination of coherent light,” Opt. Commun. 14, 30-34 (1975). [CrossRef]
  36. D. Kang and T. D. Milster, “Effect of optical aberration on Gaussian speckle in a partially coherent imaging system,” submitted to J. Opt. Soc. Am. A.
  37. D. S. Goodman and A. E. Rosenbluth, “Condenser aberrations in Kohler illumination,” Proc. SPIE 922, 108-134 (1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited