OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 9 — Sep. 1, 2009
  • pp: 1961–1966

Polarization singularities of Gaussian vortex beams diffracted at a half-plane screen beyond the paraxial approximation

Yamei Luo and Baida Lü  »View Author Affiliations


JOSA A, Vol. 26, Issue 9, pp. 1961-1966 (2009)
http://dx.doi.org/10.1364/JOSAA.26.001961


View Full Text Article

Enhanced HTML    Acrobat PDF (420 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

On the basis of the vector Rayleigh–Sommerfeld diffraction integrals, the analytical expression for Gaussian vortex beams diffracted at a half-plane screen beyond the paraxial approximation is derived and used to study the polarization singularities formed by the transverse and longitudinal electric field components in the diffracted field. It is shown that there exist C-points and L-lines that depend on the off-axis parameters in the x and y directions, waist width, wavelength, and topological charge of diffracted Gaussian vortex beams, as well as on the position parameter. By a suitable variation of the off-axis and position parameters, the creation, motion, and annihilation of polarization singularities may take place, and the topological relationship holds true. Therefore, the nonparaxial beam diffraction and propagation provide a method for generating polarization singularities.

© 2009 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(260.5430) Physical optics : Polarization
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

History
Original Manuscript: May 22, 2009
Revised Manuscript: July 7, 2009
Manuscript Accepted: July 14, 2009
Published: August 17, 2009

Citation
Yamei Luo and Baida Lü, "Polarization singularities of Gaussian vortex beams diffracted at a half-plane screen beyond the paraxial approximation," J. Opt. Soc. Am. A 26, 1961-1966 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-9-1961


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Nye, Natural Focusing and Fine Structure of Light (IOP Publishing, 1999).
  2. M. V. Berry and M. R. Dennis, “Polarization singularities in isotropic random vector waves,” Proc. R. Soc. London Ser. A 457, 141-155 (2001). [CrossRef]
  3. M. R. Dennis, “Polarization singularities in paraxial vector fields morphology and statistics,” Opt. Commun. 213, 201-221 (2002). [CrossRef]
  4. A. I. Mokhun, M. S. Soskin, and I. Freund, “Elliptic critical points: C-points, a-lines, and the sign rule,” Opt. Lett. 27, 995-997 (2002). [CrossRef]
  5. I. Freund, A. I. Mokhun, M. S. Soskin, O. V. Angelsky, and I. I. Mokhun, “Stokes singularity relations,” Opt. Lett. 27, 545-547 (2002). [CrossRef]
  6. O. V. Angelsky, A. I. Mokhun, I. I. Mokhun, and M. S. Soskin, “Interferometric methods in diagnostics of polarization singularities,” Phys. Rev. E 65, 036602 (2002). [CrossRef]
  7. O. V. Angelsky, A. I. Mokhun, I. I. Mokhun, and M. S. Soskin, “The relationship between topological characteristics of component vortices and polarization singularities,” Opt. Commun. 207, 57-65 (2002). [CrossRef]
  8. K. Y. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Singular polarimetry: Evolution of polarization singularities in electromagnetic waves propagating in a weakly anisotropic medium,” Opt. Express 16, 695-709 (2008). [CrossRef] [PubMed]
  9. I. Freund, “Polarization singularity indices in Gaussian laser beams,” Opt. Commun. 201, 251-270 (2002). [CrossRef]
  10. F. Flossmann, U. T. Schwarz, M. Maier, and M. R. Dennis, “Polarization singularities from unfolding an optical vortex through a birefringent crystal,” Phys. Rev. Lett. 95, 253901 (2005). [CrossRef] [PubMed]
  11. M. S. Soskin, V. Denisenko, and I. Freund, “Optical polarization singularities and elliptic stationary points,” Opt. Lett. 28, 1475-1477 (2003). [CrossRef] [PubMed]
  12. M. R. Dennis, “Polarization singularity anisotropy: determining monstardom,” Opt. Lett. 33, 2572-2574 (2008). [CrossRef] [PubMed]
  13. R. W. Schoonover and T. D. Visser, “Polarization singularities of focused, radially polarized fields,” Opt. Express 14, 5733-5745 (2006). [CrossRef] [PubMed]
  14. R. K. Luneburg, Mathematical Theory of Optics (Univ. of California Press, 1966).
  15. K. Duan and B. Lü, “Partially coherent noparaxial beams,” Opt. Lett. 29, 800-802 (2004). [CrossRef] [PubMed]
  16. I. Freund and N. Shvartsman, “Wave-field phase singularities: The sign principle,” Phys. Rev. A 50, 5164-5172 (1994). [CrossRef] [PubMed]
  17. J. Masajada, “Half-plane diffraction in the case of Gaussian beams containing an optical vortex,” Opt. Commun. 175, 289-294 (2000). [CrossRef]
  18. P. Liu, K. Cheng, and B. Lü, “Propagation dynamics of off-axis phase singularities,” Acta Phys. Sin. 57, 1683-1688 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited