OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 9 — Sep. 1, 2009
  • pp: 2005–2011

Quasi-physical phase compensation in digital holographic microscopy

Weijuan Qu, Chee Oi Choo, Vijay Raj Singh, Yu Yingjie, and Anand Asundi  »View Author Affiliations


JOSA A, Vol. 26, Issue 9, pp. 2005-2011 (2009)
http://dx.doi.org/10.1364/JOSAA.26.002005


View Full Text Article

Enhanced HTML    Acrobat PDF (724 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In digital holographic microscopy, if an optical setup is well aligned, the phase curvature introduced by the microscope objective (MO) together with the illuminating wave to the object wave is a spherical phase curvature. It can be physically compensated by introducing the same spherical phase curvature in the reference beam. Digital holographic microscopy setups based on the Michelson interferometric configuration with MO and an adjustable lens are presented, which can well perform the quasi-physical phase compensation during the hologram recording. In the reflection mode, the adjustable lens serves as both the condensing lens and the compensation lens. When the spatial frequency spectra of the hologram become a point spectrum, one can see that the phase curvature introduced by imaging is quasi-physically compensated. A simple plane numerical reference wavefront used for the reconstruction can give the correct quantitative phase map of the test object. A theoretical analysis and experimental demonstration are given. The simplicity of the presented setup makes it easy to align it well at lower cost.

© 2009 Optical Society of America

OCIS Codes
(120.3620) Instrumentation, measurement, and metrology : Lens system design
(180.0180) Microscopy : Microscopy
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: March 24, 2009
Revised Manuscript: July 2, 2009
Manuscript Accepted: July 22, 2009
Published: August 20, 2009

Citation
Weijuan Qu, Chee Oi Choo, Vijay Raj Singh, Yu Yingjie, and Anand Asundi, "Quasi-physical phase compensation in digital holographic microscopy," J. Opt. Soc. Am. A 26, 2005-2011 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-9-2005


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt. 31, 4973-4978 (1992). [CrossRef] [PubMed]
  2. U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002). [CrossRef]
  3. F. Dubois, L. Joannes, and J. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085-7094 (1999). [CrossRef]
  4. C. Mann, L. Yu, C.-M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693-8698 (2005). [CrossRef] [PubMed]
  5. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851-863 (2006). [CrossRef] [PubMed]
  6. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005). [CrossRef] [PubMed]
  7. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361-9373 (2006). [CrossRef]
  8. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999). [CrossRef]
  9. P. Ferraro, S. D. Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938-1946 (2003). [CrossRef] [PubMed]
  10. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300-4306 (2006). [CrossRef] [PubMed]
  11. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177-3190 (2006). [CrossRef]
  12. F. Montfort, F. Charrière, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position,” J. Opt. Soc. Am. A 23, 2944-2953 (2006). [CrossRef]
  13. Z. Ya'nan, Q. Weijuan, L. De'an, L. Zhu, Z. Yu, and L. Liren, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912-1-3 (2006). [CrossRef]
  14. D.Malacara, ed. Optical Shop Testing, 3rd ed. (Wiley, 2007). [CrossRef]
  15. T. Colomb, P. Marquet, F. Charrière, J. Kühn, P. Jourdain, B. Rappaz, P. Magistretti, and C. Depeursinge, “Enhancing the performance of digital holographic microscopy,” in SPIE Newsroom 10.1117/2.1200709.0872 (2007). [CrossRef]
  16. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070-4075 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited