## Quasi light fields: extending the light field to coherent radiation

JOSA A, Vol. 26, Issue 9, pp. 2055-2066 (2009)

http://dx.doi.org/10.1364/JOSAA.26.002055

Enhanced HTML Acrobat PDF (280 KB) | Spotlight

### Abstract

Imaging technologies such as dynamic viewpoint generation are engineered for incoherent radiation using the traditional light field, and for coherent radiation using electromagnetic field theory. We present a model of coherent image formation that strikes a balance between the utility of the light field and the comprehensive predictive power of Maxwell’s equations. We synthesize research in optics and signal processing to formulate, capture, and form images from *quasi light fields*, which extend the light field from incoherent to coherent radiation. Our coherent cameras generalize the classic beamforming algorithm in sensor array processing and invite further research on alternative notions of image formation.

© 2009 Optical Society of America

**OCIS Codes**

(030.5630) Coherence and statistical optics : Radiometry

(110.1650) Imaging systems : Coherence imaging

(110.5100) Imaging systems : Phased-array imaging systems

(110.1758) Imaging systems : Computational imaging

(070.7425) Fourier optics and signal processing : Quasi-probability distribution functions

**ToC Category:**

Coherence and Statistical Optics

**History**

Original Manuscript: June 1, 2009

Manuscript Accepted: July 22, 2009

Published: August 24, 2009

**Virtual Issues**

September 11, 2009 *Spotlight on Optics*

**Citation**

Anthony Accardi and Gregory Wornell, "Quasi light fields: extending the light field to coherent radiation," J. Opt. Soc. Am. A **26**, 2055-2066 (2009)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-9-2055

Sort: Year | Journal | Reset

### References

- M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of ACM SIGGRAPH 96 (ACM, 1996), pp. 31-42. [CrossRef]
- R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Tech. Rep. CTSR 2005-02, Stanford University, Calif. (2005).
- W. Chun and O. S. Cossairt, “Data processing for three-dimensional displays,” United States Patent 7,525,541 (April 28, 2009).
- R. Ziegler, S. Bucheli, L. Ahrenberg, M. Magnor, and M. Gross, “A bidirectional light field-hologram transform,” Comput. Graph. Forum 26, 435-446 (2007). [CrossRef]
- T. L. Szabo, Diagnostic Ultrasound Imaging: Inside Out (Elsevier, 2004).
- M. J. Bastiaans, “Application of the Wigner distribution function in optics,” in The Wigner Distribution--Theory and Applications in Signal Processing, W.Mecklenbräuker and F.Hlawatsch, eds. (Elsevier Science B.V., 1997), pp. 375-426.
- A. Walther, “Radiometry and coherence,” J. Opt. Soc. Am. 58, 1256-1259 (1968). [CrossRef]
- E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749-759 (1932). [CrossRef]
- J. Ville, “Théorie et applications de la notion de signal analytique,” Cables Transm. 2A, 61-74 (1948).
- K. D. Stephan, “Radiometry before World War II: Measuring infrared and millimeter-wave radiation 1800-1925,” IEEE Antennas Propag. Mag. 47, 28-37 (2005). [CrossRef]
- S. Chandrasekhar, Radiative Transfer (Dover, 1960).
- A. T. Friberg, G. S. Agarwal, J. T. Foley, and E. Wolf, “Statistical wave-theoretical derivation of the free-space transport equation of radiometry,” J. Opt. Soc. Am. B 9, 1386-1393 (1992). [CrossRef]
- P. Moon and G. Timoshenko, “The light field,” J. Math. Phys. 18, 51-151 (1939). [Translation of A. Gershun, The Light Field (Moscow, 1936)].
- M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, 1999).
- A. Walther, “Radiometry and coherence,” J. Opt. Soc. Am. 63, 1622-1623 (1973). [CrossRef]
- E. Wolf, “Coherence and radiometry,” J. Opt. Soc. Am. 68, 6-17 (1978). [CrossRef]
- G. S. Agarwal, J. T. Foley, and E. Wolf, “The radiance and phase-space representations of the cross-spectral density operator,” Opt. Commun. 62, 67-72 (1987). [CrossRef]
- E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,” in Computational Models of Visual Processing, M.S.Landy and J.A.Movshon, eds. (MIT Press, 1991), pp. 3-20.
- S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,” in Proceedings of ACM SIGGRAPH 96 (ACM, 1996), pp. 43-54. [CrossRef]
- B.Boashash, ed. Time Frequency Signal Analysis and Processing (Elsevier, 2003).
- R. W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, 1983).
- A. Adams and M. Levoy, “General linear cameras with finite aperture,” in Proc. Eurographics Symposium on Rendering (Eurographics, 2007).
- J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
- A. T. Friberg, “On the existence of a radiance function for finite planar sources of arbitrary states of coherence,” J. Opt. Soc. Am. 69, 192-198 (1979). [CrossRef]
- P. Flandrin, Time-Frequency/Time-Scale Analysis (Academic, 1999).
- D. J. Griffiths, Introduction to Quantum Mechanics (Pearson Education, 2005).
- G. S. Agarwal and E. Wolf, “Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. I. Mapping theorems and ordering of functions of noncommuting operators,” Phys. Rev. D 2, 2161-2186 (1970). [CrossRef]
- J. T. Foley and E. Wolf, “Radiometry as a short-wavelength limit of statistical wave theory with globally incoherent sources,” Opt. Commun. 55, 236-241 (1985). [CrossRef]
- J. R. Guerci, “Theory and application of covariance matrix tapers for robust adaptive beamforming,” IEEE Trans. Signal Process. 47, 977-985 (1999). [CrossRef]
- Z. Zhang and M. Levoy, “Wigner distributions and how they relate to the light field,” in Proceedings of ICCP 09 (IEEE, 2009).
- J. G. Kirkwood, “Quantum statistics of almost classical assemblies,” Phys. Rev. 44, 31-37 (1933). [CrossRef]
- A. Rihaczek, “Signal energy distribution in time and frequency,” IEEE Trans. Inf. Theory 14, 369-374 (1968). [CrossRef]
- ZEMAX Development Corporation, Bellevue, Wash., Optical Design Program User's Guide (2006).
- M. A. Alonso, “Radiometry and wide-angle wave fields. I. Coherent fields in two dimensions,” J. Opt. Soc. Am. A 18, 902-909 (2001). [CrossRef]
- R. G. Littlejohn and R. Winston, “Corrections to classical radiometry,” J. Opt. Soc. Am. A 10, 2024-2037 (1993). [CrossRef]
- J. R. Shewell and E. Wolf, “Inverse diffraction and a new reciprocity theorem,” J. Opt. Soc. Am. 58, 1596-1603 (1968). [CrossRef]
- H. L. Van Trees, Optimum Array Processing (Wiley, 2002). [CrossRef]
- L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).
- A. M. Zysk, P. S. Carney, and J. C. Schotland, “Eikonal method for calculation of coherence functions,” Phys. Rev. Lett. 95, 043904 (2005). [CrossRef] [PubMed]
- R. W. Schoonover, A. M. Zysk, P. S. Carney, J. C. Schotland, and E. Wolf, “Geometrical optics limit of stochastic electromagnetic fields,” Phys. Rev. A 77, 043831 (2008). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.