OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 9 — Sep. 1, 2009
  • pp: 2067–2092

Simple cell response properties imply receptive field structure: balanced Gabor and/or bandlimited field functions

Davis Cope, Barbara Blakeslee, and Mark E. McCourt  »View Author Affiliations


JOSA A, Vol. 26, Issue 9, pp. 2067-2092 (2009)
http://dx.doi.org/10.1364/JOSAA.26.002067


View Full Text Article

Enhanced HTML    Acrobat PDF (2621 KB) | SpotlightSpotlight on Optics Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The classical receptive fields of simple cells in mammalian primary visual cortex demonstrate three cardinal response properties: (1) they do not respond to stimuli that are spatially homogeneous; (2) they respond best to stimuli in a preferred orientation (direction); and (3) they do not respond to stimuli in other, nonpreferred orientations (directions). We refer to these as the balanced field property, the maximum response direction property, and the zero response direction property, respectively. These empirically determined response properties are used to derive a complete characterization of elementary receptive field functions defined as products of a circularly symmetric weight function and a simple periodic carrier. Two disjoint classes of elementary receptive field functions result: the balanced Gabor class, a generalization of the traditional Gabor filter, and a bandlimited class whose Fourier transforms have compact support (i.e., are zero valued outside of a bounded range). The detailed specification of these two classes of receptive field functions from empirically based postulates may prove useful to neurophysiologists seeking to test alternative theories of simple cell receptive field structure and to computational neuroscientists seeking basis functions with which to model human vision.

© 2009 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.4060) Vision, color, and visual optics : Vision modeling
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.6110) Vision, color, and visual optics : Spatial filtering

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: October 10, 2008
Revised Manuscript: March 23, 2009
Manuscript Accepted: April 22, 2009
Published: August 24, 2009

Virtual Issues
Vol. 4, Iss. 11 Virtual Journal for Biomedical Optics
September 11, 2009 Spotlight on Optics

Citation
Davis Cope, Barbara Blakeslee, and Mark E. McCourt, "Simple cell response properties imply receptive field structure: balanced Gabor and/or bandlimited field functions," J. Opt. Soc. Am. A 26, 2067-2092 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-9-2067


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215-243 (1968).
  2. D. H. Hubel and T. N. Wiesel, “Ferrier lecture. Functional architecture of macaque monkey visual cortex,” Proc. R. Soc. London, Ser. B 198, 1-59 (1977). [CrossRef]
  3. R. L. DeValois, D. G. Albrecht, and L. G. Thorell, “Cortical cells: bar and edge detectors, or spatial frequency filters?” in Frontiers in Visual Science, S.J.Cool and E.L.Smith, eds. (Springer-Verlag, 1978), pp. 544-556.
  4. R. L. DeValois and K. K. DeValois, Spatial Vision (Oxford Univ. Press, 1988).
  5. S. Marcelja, “Mathematical description of the responses of simple cortical cells,” J. Opt. Soc. Am. 70, 1297-1300 (1980). [CrossRef] [PubMed]
  6. J. G. Daugman, “Two-dimensional spectral analysis of cortical receptive field profiles,” Vision Res. 20, 847-856 (1980). [CrossRef] [PubMed]
  7. J. G. Daugman, “Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters,” J. Opt. Soc. Am. A 2, 1160-1169 (1985). [CrossRef] [PubMed]
  8. D. Gabor, “Theory of communication,” J. Inst. Electr. Eng. 93, 429-457 (1946).
  9. P. Heggelund, “Quantitative studies of the discharge fields of single cells in cat striate cortex,” J. Physiol. (London) 373, 277-292 (1986).
  10. P. Heggelund, “Quantitative studies of enhancement and suppression zones in the receptive field of simple cells in cat striate cortex,” J. Physiol. (London) 373, 293-310 (1986).
  11. D. Marr and E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London, Ser. B 207, 187-217 (1980). [CrossRef]
  12. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379-2394 (1987). [CrossRef] [PubMed]
  13. S. A. Klein and D. M. Levi, “Hyperacuity thresholds of 1 sec: theoretical predictions and empirical validation,” J. Opt. Soc. Am. A 2, 1170-1190 (1985). [CrossRef] [PubMed]
  14. G. Wallis, “Linear models of simple cells: correspondence to real cell responses and space spanning properties,” Spatial Vis. 14, 237-260 (2001). [CrossRef]
  15. J. J. Kulikowski and P. O. Bishop, “Fourier analysis and spatial representation in the visual cortex,” Experientia 37, 160-163 (1981). [CrossRef] [PubMed]
  16. J. P. Jones and L. A. Palmer, “An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex,” J. Neurophysiol. 58, 1233-1258 (1987). [PubMed]
  17. D. L. Ringach, “Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex,” J. Neurophysiol. 88, 455-463 (2002). [PubMed]
  18. A. B. Watson, H. B. Barlow, and J. G. Robson, “What does the eye see best?” Nature 302, 419-422 (1983). [CrossRef] [PubMed]
  19. J. M. Foley, S. Varadharajan, C. C. Koh, and M. C. Farias, “Detection of Gabor patterns of different sizes, shapes, phases and eccentricities,” Vision Res. 47, 85-107 (2007). [CrossRef]
  20. F. Heitger, L. Rosenthaler, R. von der Heydt, E. Peterhans, and O. Kubler, “Simulation of neural contour mechanisms: from simple to end-stopped cells,” Vision Res. 32, 963-981 (1992). [CrossRef] [PubMed]
  21. T. S. Lee, “Image representation using 2D gabor wavelets,” IEEE Trans. Pattern Anal. Mach. Intell. 18, 1-13 (1996). [CrossRef]
  22. M. Potzsch, N. Kruger, and C. von der Malsburg, “Improving object recognition by transforming Gabor filter responses,” Network Comput. Neural Syst. 7, 341-347 (1996). [CrossRef]
  23. N. Petkov, “Biologically motivated computationally intensive approaches to image pattern recognition,” Future Gener. Comput. Syst. 11, 451-465 (1995). [CrossRef]
  24. N. Petkov and P. Kruizinga, “Computational models of visual neurons specialised in the detection of periodic and aperiodic oriented visual stimuli: bar and grating cells,” Biol. Cybern. 76, 83-96 (1997). [CrossRef] [PubMed]
  25. J. D. Victor and B. W. Knight, “Simultaneously band and space limited functions in two dimensions, and receptive fields of visual neurons,” in Springer Applied Mathematical Sciences Series, E.Kaplan, J.Marsden, and K.R.Sreenivasan, eds. (Springer, 2003), pp. 375-420.
  26. D. Cope, B. Blakeslee, and M. E. McCourt, “Simple cell response properties imply receptive field structure: Balanced Gabor and/or bandlimited field functions. Supplement. Appendices A, B, C and Figures 13-16.” http://hdl.handle.net/10365/5418.
  27. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. Applied Mathematics Series 55 (National Bureau of Standards, 1972).
  28. B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive field properties by learning a sparse code for natural images,” Nature 381, 607-609 (1996). [CrossRef] [PubMed]
  29. B. A. Olshausen and D. J. Field, “Vision and the coding of natural images,” Am. Sci. 88, 238-245 (2000).
  30. U. Polat and C. W. Tyler, “What pattern the eye sees best,” Vision Res. 39, 887-895 (1999). [CrossRef] [PubMed]
  31. S. J. Anderson and D. C. Burr, “Spatial summation properties of directionally selective mechanisms in human vision,” J. Opt. Soc. Am. A 8, 1330-1339 (1991). [CrossRef] [PubMed]
  32. A. J. Parker and M. J. Hawken, “Two-dimensional spatial structure of receptive fields in monkey striate cortex,” J. Opt. Soc. Am. A 5, 598-605 (1988). [CrossRef] [PubMed]
  33. L. Maffei and A. Fiorentini, “The unresponsive regions of visual cortical receptive fields,” Vision Res. 16, 1131-1139 (1976). [CrossRef] [PubMed]
  34. T. D. Albright and G. R. Stoner, “Contextual influences on visual processing,” Annu. Rev. Neurosci. 25, 339-379 (2002). [CrossRef] [PubMed]
  35. Y. Kayama, R. R. Riso, J. R. Bartlett, and R. W. Doty, “Luxotonic responses of units in macaque striate cortex,” J. Neurophysiol. 42(6), 1495-1517 (1979). [PubMed]
  36. M. Kinoshita and H. Komatsu, “Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex,” J. Neurophysiol. 86, 2559-2570 (2001). [PubMed]
  37. S. P. MacEvoy, W. Kim, and M. A. Paradiso, “Integration of surface information in primary visual cortex,” Nat. Neurosci. 1, 616-620 (1998). [CrossRef]
  38. X. Peng and D. C. Van Essen, “Peaked encoding of relative luminance in macaque areas V1 and V2,” J. Neurophysiol. 93, 1620-1632 (2005). [CrossRef]
  39. A. W. Roe, H. D. Lu, and C. P. Hung, “Cortical processing of a brightness illusion,” Proc. Natl. Acad. Sci. U.S.A. 102, 3869-3874 (2005). [CrossRef] [PubMed]
  40. A. F. Rossi and M. A. Paradiso, “Temporal limits of brightness induction and mechanisms of brightness perception,” Vision Res. 36, 1391-1398 (1996). [CrossRef] [PubMed]
  41. A. F. Rossi and M. A. Paradiso, “Neural correlates of perceived brightness in the retina, lateral geniculate nucleus, and striate cortex,” J. Neurosci. 19, 6145-6156 (1999). [PubMed]
  42. A. F. Rossi, C. D. Rittenhouse, and M. A. Paradiso, “The representation of brightness in primary visual cortex,” Science 273, 1104-1107 (1996). [CrossRef] [PubMed]
  43. T. Wachtler, T. J. Sejnowski, and T. D. Albright, “Representation of color stimuli in awake macaque primary visual cortex,” Neuron 37, 681-691 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited