OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 1 — Jan. 1, 2010
  • pp: 123–130

Canonical forms of depolarizing Mueller matrices

Razvigor Ossikovski  »View Author Affiliations


JOSA A, Vol. 27, Issue 1, pp. 123-130 (2010)
http://dx.doi.org/10.1364/JOSAA.27.000123


View Full Text Article

Enhanced HTML    Acrobat PDF (140 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is shown that any depolarizing Mueller matrix can be reduced, through a product decomposition, to one of a total of two canonical depolarizer forms, a diagonal and a non-diagonal one. As a consequence, depolarizing Mueller matrices can be divided into Stokes diagonalizable and Stokes non-diagonalizable ones. Properties characteristic of the two canonical depolarizers are identified and discussed. Both canonical depolarizer forms are illustrated in experimental examples taken from the literature.

© 2009 Optical Society of America

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(260.2130) Physical optics : Ellipsometry and polarimetry
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

History
Original Manuscript: September 22, 2009
Revised Manuscript: November 5, 2009
Manuscript Accepted: November 11, 2009
Published: December 23, 2009

Citation
Razvigor Ossikovski, "Canonical forms of depolarizing Mueller matrices," J. Opt. Soc. Am. A 27, 123-130 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-1-123


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Brosseau, Fundamentals of Polarized Light: a Statistical Optics Approach (Wiley, 1998).
  2. J. J. Gil and E. Bernabeu, “Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from the polar decomposition of its Mueller matrix,” Optik (Stuttgart) 76, 67-71 (1987).
  3. S.-Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106-1113 (1996). [CrossRef]
  4. R. Sridhar and R. Simon, “Normal form for Mueller matrices in polarization optics,” J. Mod. Opt. 41, 1903-1915 (1994). [CrossRef]
  5. A. V. Gopala Rao, K. S. Malesh, and Sudha, “On the algebraic characterization of a Mueller matrix in polarization optics. I. Identifying a Mueller matrix from its N matrix,” J. Mod. Opt. 45, 955-987 (1998).
  6. C. V. M. van der Mee, “An eigenvalue criterion for matrices transforming Stokes parameters,” J. Math. Phys. 34, 5072-5088 (1993). [CrossRef]
  7. Y. Bolshakov, C. V. M. van der Mee, A. C. M. Ran, B. Reichstein, and L. Rodman, “Polar decompositions in finite dimensional indefinite scalar product spaces: special cases and applications,” in Operator Theory: Advances and Applications, I.Gohberg, ed. (Birkhäuser Verlag, 1996), Vol. 87, pp. 61-94.
  8. Y. Bolshakov, C. V. M. van der Mee, A. C. M. Ran, B. Reichstein, and L. Rodman, “Errata for: Polar decompositions in finite dimensional indefinite scalar product spaces: special cases and applications,” Integral Equation Oper. Theory 27, 497-501 (1997). [CrossRef]
  9. R. Ossikovski, A. De Martino, and S. Guyot, “Forward and reverse product decompositions of depolarizing Mueller matrices,” Opt. Lett. 32, 689-691 (2007). [CrossRef] [PubMed]
  10. A. V. Gopala Rao, K. S. Malesh, and Sudha, “On the algebraic characterization of a Mueller matrix in polarization optics. II. Necessary and sufficient conditions for Jones-derived Mueller matrices,” J. Mod. Opt. 45, 989-999 (1998).
  11. D. G. M. Anderson and R. Barakat, “Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix,” J. Opt. Soc. Am. A 11, 2305-2319 (1994). [CrossRef]
  12. M. Renardy, “Singular value decomposition in Minkowski space,” Linear Algebr. Appl. 236, 53-58 (1996). [CrossRef]
  13. S.-Y. Lu and R. A. Chipman, “Homogeneous and inhomogeneous Jones matrices,” J. Opt. Soc. Am. A 11, 766-773 (1994). [CrossRef]
  14. Sudha and A. V. Gopala Rao, “Polarization elements: a group theoretical study,” J. Opt. Soc. Am. A 18, 3130-3134 (2001). [CrossRef]
  15. R. Ossikovski, “Analysis of depolarizing Mueller matrices through a symmetric decomposition,” J. Opt. Soc. Am. A 26, 1109-1118 (2009). [CrossRef]
  16. A. S. Marathay, “Operator formalism in the theory of partial polarization,” J. Opt. Soc. Am. 55, 969-980 (1965).
  17. R. Ossikovski, C. Fallet, A. Pierangelo, and A. De Martino, “Experimental implementation and properties of Stokes nondiagonalizable depolarizing Mueller matrices,” Opt. Lett. 34, 974-976 (2009). [CrossRef] [PubMed]
  18. J. J. Gil and E. Bernabeu, “Depolarization and polarization indices of an optical system,” Opt. Acta 33, 185-189 (1986). [CrossRef]
  19. Z. Sekera, “Scattering matrices and reciprocity relationships for various representations of the state of polarization,” J. Opt. Soc. Am. 56, 1732-1740 (1966). [CrossRef]
  20. R. Ossikovski, “Interpretation of nondepolarizing Mueller matrices based on singular value decomposition,” J. Opt. Soc. Am. A 25, 473-482 (2008). [CrossRef]
  21. F. Le Roy-Bréhonnet and B. Le Jeune, “Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties,” Prog. Quantum Electron. 21, 109-151 (1997). [CrossRef]
  22. R. Ossikovski, M. Anastasiadou, and A. De Martino, “Product decompositions of depolarizing Mueller matrices with negative determinants,” Opt. Commun. 281, 2406-2410 (2008). [CrossRef]
  23. R. Ossikovski, M. Foldyna, C. Fallet, and A. De Martino, “Experimental evidence for naturally occurring nondiagonal depolarizers,” Opt. Lett. 34, 2426-2428 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited