OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 1 — Jan. 1, 2010
  • pp: 13–20

Nondiffracting vortex-beams in a birefringent chiral crystal

Tatyana A. Fadeyeva and Alexander V. Volyar  »View Author Affiliations

JOSA A, Vol. 27, Issue 1, pp. 13-20 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (899 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A vector-wave analysis of nondiffracting beams propagating along a birefringent chiral crystal for the case of tensor character of both the optical activity and linear birefringence is presented. We have written characteristic equations and found propagation constants and amplitude parameters of the eigenmodes. The characteristic curves have anomalous zones described by an isotropic point or a gap-point, provided that the elements of an optical activity tensor obey the requirement g 11 g 33 < 0 , | g 33 | > | g 11 | . In the anomalous zone, a nondiffracting beam can propagate through a purely chiral crystal as if through an isotropic medium. We have shown that the field of eigenmodes is nonuniformly polarized in the beam cross section, while the field with the initially uniform polarization distribution experiences periodic transformations. We have revealed that even a purely chiral crystal without linear birefringence can generate optical vortices in an initially vortex-free Bessel beam.

© 2009 Optical Society of America

OCIS Codes
(260.0260) Physical optics : Physical optics
(260.1180) Physical optics : Crystal optics
(350.5030) Other areas of optics : Phase
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

Original Manuscript: August 18, 2009
Revised Manuscript: November 3, 2009
Manuscript Accepted: November 3, 2009
Published: December 3, 2009

Tatyana A. Fadeyeva and Alexander V. Volyar, "Nondiffracting vortex-beams in a birefringent chiral crystal," J. Opt. Soc. Am. A 27, 13-20 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Gutierrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25, 1493-1495 (2000). [CrossRef]
  2. D. McGoloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15-28 (2005). [CrossRef]
  3. M. A. Bandres, J. C. Gutiérrez-Vega, and S. Chávez-Cerda, “Parabolic nondiffracting optical wave fields,” Opt. Lett. 29, 44-46 (2004). [CrossRef] [PubMed]
  4. S. Chávez-Cerda, M. J. Padgett, I. Allison, G. H. C. New, J. C. Gutiérrez-Vega, A. T. O'Neil, I. MacVicar, and J. Courtial, “Holographic generation and orbit angular momentum of high-order Mathieu beams,” J. Opt. B: Quantum Semiclassical Opt. 4, S52-S57 (2002). [CrossRef]
  5. C. López-Mariscal, M. Bandres, J. C. Gutiérrez-Vega, S. Chávez-Cerda, “Observation of parabolic nondiffracting optical fields,” Opt. Express 13, 2364-2369 (2005). [CrossRef] [PubMed]
  6. G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6, 150-152 (1989). [CrossRef]
  7. V. Kotlyar, A. Kovalev, R. Skidanov, O. Moiseev, and V. Soifer, “Diffraction of a finite-radius plane wave and a Gaussian beam by a helical axicon and a spiral phase plate,” J. Opt. Soc. Am. A 24, 1955-1964 (2007). [CrossRef]
  8. J. Molloy and M. Padgett, “Lights, action: optical tweezers,” Contemp. Phys. 43, 241-258 (2002). [CrossRef]
  9. M. Soskin and M. Vasnetsov, “Singular optics,” in Progress in Optics, Vol. 42, E.Wolf, ed. (North-Holland, 2001), pp. 219-276. [CrossRef]
  10. Z. Bouchali and M. Olvik, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42, 1555-1566 (1995). [CrossRef]
  11. R. Mishra, “A vector analysis of a Bessel beam,” Opt. Commun. 85, 159-161 (1991). [CrossRef]
  12. N. Kazak, N. Khilo, and A. Ryzhevich, “Generation of Bessel beams under the conditions of internal conical refraction,” Quantum Electron. 29, 1020-1024 (1999). [CrossRef]
  13. V. Belyi, T. King, N. Kazak, N. Khilo, A. Ryzhevich, and E. Katranji, “Methods of formation and nonlinear conversion of Bessel optical vortices,” Proc. SPIE 4403, 229-240 (2001). [CrossRef]
  14. M. V. Berry and M. R. Jeffray, “Conical diffraction: Hamilton's diabolical points at the heart of crystal optics,” in Progress in Optics, Vol. 50, E.Wolf, ed. (Elsevier, 2007), pp. 11-50. [CrossRef]
  15. G. Cincotti, A. Ciatoni, and C. Palma, “Laguerre-Gaussian and Bessel-Gaussian beams in uniaxial crystals,” J. Opt. Soc. Am. A 19, 1680-1688 (2002). [CrossRef]
  16. A. Volyar, and T. Fadeyeva, “Laguerre-Gaussian beams with complex and real arguments in uniaxial crystals,” Opt. Spectrosc. 101, 297-304 (2006). [CrossRef]
  17. A. Ciattoni, G. Cincotti, and C. Palma, “Circular polarized beams and vortex generation in uniaxial media,” J. Opt. Soc. Am. A 20, 163-171 (2003). [CrossRef]
  18. T. Fadeyeva, A. Rubass, Y. Egorov, A. Volyar, and G. Swartzlander, “Quadrefringence of optical vortices in a uniaxial crystal,” J. Opt. Soc. Am. A 25, 1634-1641 (2008). [CrossRef]
  19. T. A. Fadeyeva, A. F. Rubass, and A. V. Volyar, “Transverse shift of a high-order paraxial vortex-beam induced by a homogeneous anisotropic medium,” Phys. Rev. A 79, 053815.1-12 (2009). [CrossRef]
  20. F. Flossman, U. T. Schwarz, M. Maier, and M. R. Dennis, “Polarization singularities from unfolding an optical vortex through a birefringent crystal,” Phys. Rev. Lett. 95, 253901-4 (2005). [CrossRef]
  21. S. Bassiri, C. H. Papas, and N. Engheta, “Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab,” J. Opt. Soc. Am. A 5, 1450-1459 (1988). [CrossRef]
  22. M. Berry and M. Dennis, “The optical singularities of birefringent dichroic chiral crystals,” Proc. R. Soc. London, Ser. A 459, 1261-1292 (2003). [CrossRef]
  23. M. V. Berry and M. R. Jeffray, “Chiral conical diffraction,” J. Opt. A, Pure Appl. Opt. 8, 363-372 (2006). [CrossRef]
  24. A. Volyar, A. Rubass, V. Shvedov, T. Fadeyeva, and K. Kotlyarov, “Optical vortices and Airy' spiral in chiral crystals,” Ukr. J. Phys. Opt. 8, 166-181 (2007), http://www.ifo.lviv.ua/journal/2007/2007_3_8_05.html. [CrossRef]
  25. B. Z. Katsenelenbaum, E. N. Korshunova, A. N. Sivov, and A. D. Shatrov, “Chiral electromagnetic objects,” Phys. Usp. 40, 1149-1160 (1997). [CrossRef]
  26. A. Yariv and P. Yeh, Optical Waves of Crystals (Wiley, 1984).
  27. S. C. McClain, L. W. Hillman, and R. A. Chipman, “Polarization ray in anisotropic optically active media. II. Theory and physics,” J. Opt. Soc. Am. A 10, 2383-2393 (1993). [CrossRef]
  28. S. Ruschin and A. Leizer, “Evanescent Bessel beams,” J. Opt. Soc. Am. A 15, 1139-1143 (1998). [CrossRef]
  29. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1968).
  30. E. S. Petrova, “The influence of the natural and magnetic gyrotropy on the polarization and energy of the vector Bessel light beams,” Proc. of Natl. Acad. Sci. Belarus. Series of physicsmath. 1, 95-100 (2002).
  31. S. Orlov, K. Regelskis, V. Smilgevičius, and A. Stabinis, “Propagation of Bessel beams carrying optical vortices,” Opt. Commun. 209, 155-165 (2002). [CrossRef]
  32. S. Orlov and A. Stabinis, “Propagation of superpositions of coaxial optical Bessel beams carrying vortices,” J. Opt. A, Pure Appl. Opt. 6, S259-S262 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited