OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 1 — Jan. 1, 2010
  • pp: 76–81

Power carried by a nonparaxial TM beam

Alexandre April  »View Author Affiliations

JOSA A, Vol. 27, Issue 1, pp. 76-81 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (123 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In paraxial optics, the power carried by an optical beam can be accurately calculated by means of the integral of the squared modulus of its electric field over a plane transverse to the propagation axis. However, for nonparaxial electromagnetic beams, it is more appropriate to define the power carried by the beam by the integral of the longitudinal component of its time-averaged Poynting vector over a plane transverse to the propagation axis. In this paper, the expression of the power carried by a high-aperture transverse magnetic (TM) beam of any order is determined. The general expression of the power carried by a TM beam, which also applies for a transverse electric (TE) beam, is given in terms of a modified Struve function of order equal to an integer plus one-half.

© 2009 Optical Society of America

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization
(350.5500) Other areas of optics : Propagation

ToC Category:
Physical Optics

Original Manuscript: August 4, 2009
Revised Manuscript: November 14, 2009
Manuscript Accepted: November 16, 2009
Published: December 9, 2009

Alexandre April, "Power carried by a nonparaxial TM beam," J. Opt. Soc. Am. A 27, 76-81 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. I. Salamin and C. H. Keitel, “Electron acceleration by a tightly focused laser beam,” Phys. Rev. Lett. 88, 095005 (2002). [CrossRef] [PubMed]
  2. C. Varin, M. Piché, and M. A. Porras, “Acceleration of electrons from rest to GeV energies by ultrashort transverse magnetic laser pulses in free space,” Phys. Rev. E 71, 026603 (2005). [CrossRef]
  3. J. Stadler, C. Stanciu, C. Stupperich, and A. J. Meixner, “Tighter focusing with a parabolic mirror,” Opt. Lett. 36, 681-683 (2008). [CrossRef]
  4. H. Dehez, M. Piché, and Y. De Koninck, “Enhanced resolution in two-photon imaging using a TM01 laser beam at a dielectric interface,” Opt. Lett. 34, 3601-3603 (2009). [CrossRef] [PubMed]
  5. C. J. R. Sheppard and S. Saghafi, “Electromagnetic Gaussian beams beyond the paraxial approximation,” J. Opt. Soc. Am. A 16, 1381-1386 (1999). [CrossRef]
  6. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light--theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109-113 (2001). [CrossRef]
  7. Y. I. Salamin, “Fields of a radially polarized Gaussian laser beam beyond the paraxial approximation,” Opt. Lett. 31, 2619-2621 (2006). [CrossRef] [PubMed]
  8. Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24, 1793-1798 (2007). [CrossRef]
  9. Q. Cao and X. Deng, “Power carried by scalar light beams,” Opt. Commun. 151, 212-216 (1998). [CrossRef]
  10. J. Lekner, “TM, TE and 'TEM' beam modes: exact solutions and their problems,” J. Opt. A, Pure Appl. Opt. 3, 407-412 (2001). [CrossRef]
  11. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1-7 (2000). [CrossRef]
  12. C. J. R. Sheppard and S. Saghafi, “Transverse-electric and transverse-magnetic beam modes beyond the paraxial approximation,” Opt. Lett. 24, 1543-1545 (1999). [CrossRef]
  13. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77-87 (2000). [CrossRef] [PubMed]
  14. I. J. Cooper, M. Roy, and C. J. R. Sheppard, “Focusing of pseudoradial polarized beams,” Opt. Express 13, 1066-1071 (2005). [CrossRef] [PubMed]
  15. D. Deng, “Nonparaxial propagation of radially polarized light beams,” J. Opt. Soc. Am. B 23, 1228-1234 (2006). [CrossRef]
  16. C. Varin, M. Piché, and M. A. Porras, “Analytical calculation of the longitudinal electric field resulting from the tight focusing of an ultrafast transverse-magnetic laser beam,” J. Opt. Soc. Am. A 23, 2027-2038 (2006). [CrossRef]
  17. A. April, “Nonparaxial TM and TE beams in free space,” Opt. Lett. 33, 1563-1565 (2008). [CrossRef] [PubMed]
  18. S. R. Seshadri, “Quality of paraxial electromagnetic beams,” Appl. Opt. 45, 5335-5345 (2006). [CrossRef] [PubMed]
  19. H. Kawauchi, Y. Kozawa, and S. Sato, “Generation of radially polarized Ti:sapphire laser beam using a c-cut crystal,” Opt. Lett. 33, 1984-1986 (2008). [CrossRef] [PubMed]
  20. A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D: Appl. Phys. 32, 2871-2875 (1999). [CrossRef]
  21. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234-2239 (1990). [CrossRef] [PubMed]
  22. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  23. V. G. Niziev, R. S. Chang, and A. V. Nesterov, “Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer,” Appl. Opt. 45, 8393-8399 (2006). [CrossRef] [PubMed]
  24. T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80, 707-713 (2005). [CrossRef]
  25. Y. Kozawa and S. Sato, “Single higher-order transverse mode operation of a radially polarized Nd:YAG laser using an annularly reflectivity-modulated photonic crystal coupler,” Opt. Lett. 33, 2278-2280 (2008). [CrossRef] [PubMed]
  26. C. Rotschild, S. Zommer, S. Moed, O. Hershcovitz, and S. G. Lipson, “Adjustable spiral phase plate,” Appl. Opt. 43, 2397-2399 (2004). [CrossRef] [PubMed]
  27. M. A. A. Neil, F. Massoumian, R. Juskaitis, and T. Wilson, “Method for the generation of arbitrary complex vector wave fronts,” Opt. Lett. 27, 1929-1931 (2002). [CrossRef]
  28. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A. 253, 358-379 (1959). [CrossRef]
  29. M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365-1369 (1975). [CrossRef]
  30. G. A. Deschamps, “Gaussian beam as a bundle of complex rays,” Electron. Lett. 7, 684-685 (1971). [CrossRef]
  31. M. Couture and P.-A. Bélanger, “From Gaussian beam to complex-source-point spherical wave,” Phys. Rev. A 24, 355-359 (1981). [CrossRef]
  32. C. J. R. Sheppard and S. Saghafi, “Beam modes beyond the paraxial approximation: a scalar treatment,” Phys. Rev. A 57, 2971-2979 (1998). [CrossRef]
  33. Z. Ulanowski and I. K. Ludlow, “Scalar field of nonparaxial Gaussian beams,” Opt. Lett. 25, 1792-1794 (2000). [CrossRef]
  34. A. April, “Nonparaxial elegant Laguerre-Gaussian beams,” Opt. Lett. 33, 1392-1394 (2008). [CrossRef] [PubMed]
  35. G. Arfken, Mathematical Methods for Physicists, 3rd ed. (Academic, 1985).
  36. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited