OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 1 — Jan. 1, 2010
  • pp: 85–94

Magnetic field integral equation analysis of surface plasmon scattering by rectangular dielectric channel discontinuities

Ioannis Chremmos  »View Author Affiliations


JOSA A, Vol. 27, Issue 1, pp. 85-94 (2010)
http://dx.doi.org/10.1364/JOSAA.27.000085


View Full Text Article

Enhanced HTML    Acrobat PDF (598 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The scattering of a surface plasmon polariton (SPP) by a rectangular dielectric channel discontinuity is analyzed through a rigorous magnetic field integral equation method. The scattering phenomenon is formulated by means of the magnetic-type scalar integral equation, which is subsequently treated through an entire-domain Galerkin method of moments (MoM), based on a Fourier-series plane wave expansion of the magnetic field inside the discontinuity. The use of Green’s function Fourier transform allows all integrations over the area and along the boundary of the discontinuity to be performed analytically, resulting in a MoM matrix with entries that are expressed as spectral integrals of closed-form expressions. Complex analysis techniques, such as Cauchy’s residue theorem and the saddle-point method, are applied to obtain the amplitudes of the transmitted and reflected SPP modes and the radiated field pattern. Through numerical results, we examine the wavelength selectivity of transmission and reflection against the channel dimensions as well as the sensitivity to changes in the refractive index of the discontinuity, which is useful for sensing applications.

© 2009 Optical Society of America

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(290.5825) Scattering : Scattering theory

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 28, 2009
Manuscript Accepted: November 9, 2009
Published: December 9, 2009

Citation
Ioannis Chremmos, "Magnetic field integral equation analysis of surface plasmon scattering by rectangular dielectric channel discontinuities," J. Opt. Soc. Am. A 27, 85-94 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-1-85


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves),” J. Opt. Soc. Am. 31, 213-222 (1941). [CrossRef]
  2. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. London 18, 269-275 (1902). [CrossRef]
  3. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21, 1530-1533 (1968). [CrossRef]
  4. H. Ritchie, “Plasmon losses by fast electrons in thin films,” Phys. Rev. 106, 874-881 (1957). [CrossRef]
  5. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135-2136 (1963).
  6. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398-410 (1968). [CrossRef]
  7. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999). [CrossRef]
  8. K.Kneipp, M.Moskovits, and H.Kneipp, eds., Surface-Enhanced Raman Scattering: Physics and Applications (Springer, 2006). [CrossRef]
  9. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), Chap. 9.
  10. M. T. Bohr, R. S. Chau, T. Ghani, and K. Mistry, “The high-k solution,” IEEE Spectrum 44, 29-35 (2007). [CrossRef]
  11. I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 354031-3540313 (2002). [CrossRef]
  12. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006). [CrossRef] [PubMed]
  13. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005). [CrossRef] [PubMed]
  14. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998). [CrossRef]
  15. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002). [CrossRef] [PubMed]
  16. F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7, S97-S101 (2005). [CrossRef]
  17. T. Søndergaard and S. I. Bozhevolnyi, “Surface plasmon polariton scattering by a small particle placed near a metal surface: an analytical study,” Phys. Rev. B 69, 045422 (2004). [CrossRef]
  18. D. R. Shankaran, K. V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B 121, 158-177 (2007). [CrossRef]
  19. T. A. Leskova, A. A. Maradudin, and W. Zierau, “Surface plasmon polariton propagation near an index step,” Opt. Commun. 249, 23-35 (2005). [CrossRef]
  20. H. Ogura and Z. L. Wang, “Surface-plasmon mode on a random rough metal surface: enhanced backscattering and localization,” Phys. Rev. B 53, 10358-10371 (1996). [CrossRef]
  21. J. A. Sánchez-Gil, “Coupling, resonance transmission, and tunneling of surface-plasmon polaritons through metallic gratings of finite length,” Phys. Rev. B 53, 10317-10327 (1996). [CrossRef]
  22. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photonics Technol. Lett. 19, 91-93 (2007). [CrossRef]
  23. F. De León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys. 10, 105017 (2008). [CrossRef]
  24. J. A. Sánchez-Gil and A. A. Maradudin, “Near-field and far-field scattering of surface plasmon polaritons by one-dimensional surface defects,” Phys. Rev. B 60, 8359-8367 (1999). [CrossRef]
  25. J. Sánchez-Gil and A. Maradudin, “Dynamic near-field calculations of surface-plasmon polariton pulses resonantly scattered at sub-micron metal defects,” Opt. Express 12, 883-894 (2004). [CrossRef] [PubMed]
  26. A. Y. Nikitin, F. Lopez-Tejeira, and L. Martin-Moreno, “Scattering of surface plasmon polaritons by one-dimensional inhomogeneities,” Phys. Rev. B 75, 035129 (2007). [CrossRef]
  27. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16, 16314-16325 (2008). [CrossRef] [PubMed]
  28. X.-S. Lin and X.-G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometric sizes,” Opt. Lett. 33, 2874-2876 (2008). [CrossRef] [PubMed]
  29. D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30, 1186-1188 (2005). [CrossRef] [PubMed]
  30. S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, “Novel efficient design of Y-splitter for surface plasmon polariton applications,” Opt. Express 16, 14369-14379 (2008). [CrossRef] [PubMed]
  31. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006). [CrossRef] [PubMed]
  32. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14, 2932-2937 (2006). [CrossRef] [PubMed]
  33. K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Channel plasmon-polariton modes in V grooves filled with dielectric,” J. Appl. Phys. 103, 034304 (2008). [CrossRef]
  34. R. E. Collin, Field Theory of Guided Waves, 2nd ed. (Wiley-IEEE Press, 1990). [CrossRef]
  35. W. C. Chew, Waves and Fields in Inhomogenous Media, 2nd ed. (Wiley-IEEE Press, 1999). [CrossRef]
  36. R. F. Harrington, Field Computation by Moment Methods (Wiley-IEEE Press, 1993). [CrossRef]
  37. G. Bachmann, L. Narici, and E. Beckenstein, Fourier and Wavelet Analysis (Universitext Series, Springer, 2000). [CrossRef]
  38. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15, 7888-7893 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited