OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 1 — Jan. 1, 2010
  • pp: 95–99

Large-area maskless surface plasmon interference for one- and two-dimensional periodic nanoscale feature patterning

K. V. Sreekanth and V. M. Murukeshan  »View Author Affiliations


JOSA A, Vol. 27, Issue 1, pp. 95-99 (2010)
http://dx.doi.org/10.1364/JOSAA.27.000095


View Full Text Article

Enhanced HTML    Acrobat PDF (586 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A promising maskless surface-plasmon-interference nanoscale lithographic technique is proposed and demonstrated experimentally in this paper. One-dimensional (grating-type) and two-dimensional (pillar-type) nanocale features were patterned on the photoresist layer using a 364 nm illumination wavelength source with a single exposure, by employing a custom-made prism layer configuration. Large-area patterns of grating lines and pillars with feature size 90 nm were realized experimentally using this configuration.

© 2009 Optical Society of America

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: September 9, 2009
Revised Manuscript: October 26, 2009
Manuscript Accepted: October 30, 2009
Published: December 11, 2009

Citation
K. V. Sreekanth and V. M. Murukeshan, "Large-area maskless surface plasmon interference for one- and two-dimensional periodic nanoscale feature patterning," J. Opt. Soc. Am. A 27, 95-99 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-1-95


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Okazaki, “Resolution limits of optical lithography,” J. Vac. Sci. Technol. B 9, 2829-2833 (1991). [CrossRef]
  2. R. J. Blaikie and S. J. McNab, “Evanescent interferometric lithography,” Appl. Opt. 40, 1692-1698 (2001). [CrossRef]
  3. J. K. Chua, V. M. Murukeshan, S. K. Tan, and Q. Y. Lin, “Four beams evanescent waves interference lithography for patterning of two dimensional features,” Opt. Express 15, 3437-3451 (2007). [CrossRef] [PubMed]
  4. B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, “Evanescent wave imaging in optical lithography,” Proc. SPIE. 6154, 61540A (2006). [CrossRef]
  5. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085-1088 (2004). [CrossRef]
  6. Y. Lim, S. Kim, H. Kim, J. Jung, and B. Lee, “Interference of SP waves and plasmon coupled waveguide modes for the patterning of thin film,” IEEE J. Quantum. Electron. 44, 305-311 (2008). [CrossRef]
  7. X. Guo, J. Du, Y. Guo, and J. Yao, “Large-area surface-plasmon polariton interference lithography,” Opt. Lett. 31, 2613-2615 (2006). [CrossRef] [PubMed]
  8. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780-4782 (2004). [CrossRef]
  9. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957-961 (2005). [CrossRef] [PubMed]
  10. D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86, 253107 (2005). [CrossRef]
  11. S. Seo, H. C. Kim, H. Ko, and M. Cheng, “Subwavelength proximity nanolithography using a plasmonic lens,” J. Vac. Sci. Technol. B 25, 2271-2276 (2007). [CrossRef]
  12. Z. Liu, Y. Wang, J. Yao, H. Lee, W. Srituravanich, and X. Zhang, “Broad band two dimensional manipulation of SPs,” Nano Lett. 9, 462-466 (2009). [CrossRef]
  13. A. Heltzel, S. Theppakuttai, S. C. Chen, and J. R. Howell, “Surface plasmon based nanopatterning assisted by gold nanospheres,” Nanotechnology 19, 025305 (2008). [CrossRef] [PubMed]
  14. K. Piglmayer, R. Denk, and D. Bauerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80, 4693-4695 (2002). [CrossRef]
  15. V. M. Murukeshan and K. V. Sreekanth, “Excitation of gap modes in a metal particle-surface system for sub-30 nm plasmonic lithography,” Opt. Lett. 34, 845-847 (2009). [CrossRef] [PubMed]
  16. A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing SPs by photon tunneling,” Phys. Rev. B 71, 165418 (2005). [CrossRef]
  17. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  18. A. Passian, A. Wig, L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area SP interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy 100, 429-436 (2004). [CrossRef] [PubMed]
  19. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited