OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 10 — Oct. 1, 2010
  • pp: 2097–2105

Color constancy based on texture pyramid matching and regularized local regression

Meng Wu, Jun Sun, Jun Zhou, and Gengjian Xue  »View Author Affiliations


JOSA A, Vol. 27, Issue 10, pp. 2097-2105 (2010)
http://dx.doi.org/10.1364/JOSAA.27.002097


View Full Text Article

Enhanced HTML    Acrobat PDF (436 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Considering that no single algorithm available is universal in color constancy, we propose an effective combination approach using a texture-based matching strategy and a local regression with prior-knowledge regularization. To represent the images, we construct a texture pyramid using an integrated Weibull distribution. Then we define an image similarity measure to search for the K most similar images of the test image. To combine the single algorithms, we integrate prior knowledge into a regularized local regression in a decorrelated color space. Regression weights are obtained on these similar images, and the regularization is implemented by the frequency ratio of the best single algorithm. Experiments on two real world datasets show our approach outperforms the state-of-the-art single algorithms and popular combination approaches with a performance increase of at least 29% compared to the best-performing single algorithm w.r.t median angular error.

© 2010 Optical Society of America

OCIS Codes
(150.0150) Machine vision : Machine vision
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1690) Vision, color, and visual optics : Color
(330.1720) Vision, color, and visual optics : Color vision

ToC Category:
Machine Vision

History
Original Manuscript: April 5, 2010
Revised Manuscript: August 1, 2010
Manuscript Accepted: August 2, 2010
Published: September 2, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Citation
Meng Wu, Jun Sun, Jun Zhou, and Gengjian Xue, "Color constancy based on texture pyramid matching and regularized local regression," J. Opt. Soc. Am. A 27, 2097-2105 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-10-2097


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Gijsenij and T. Gevers, “Color constancy using natural image statistics,” in IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2007), pp. 1–8. [CrossRef]
  2. A. Gijsenij and T. Gevers, “Color constancy using natural image statistics and scene semantics,” IEEE Trans. Pattern Anal. Mach. Intell. (2010, in press).
  3. P. Li, “An adaptive binning color model for mean shift tracking,” IEEE Trans. Circuits Syst. Video Technol. 18, 1293–1299 (2008). [CrossRef]
  4. T. Gevers and A. W. M. Smeulders, “Color-based object recognition,” Pattern Recogn. 32, 453–464 (1999). [CrossRef]
  5. S. D. Hordely, “Scene illluminant estimation: past, present and future,” Color Res. Appl. 31, 303–314 (2006). [CrossRef]
  6. G. Schaefer, S. Hordley, and G. Finalayson, “A combined physical and statistical approach to colour constancy,” in IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2005), pp. 148–153.
  7. B. Li, D. Xu, and C. Y. Lang, “Colour constancy based on texture similarity for natural images,” Color. Technol. 125, 328–333 (2009). [CrossRef]
  8. V. C. Cardei and B. Funt, “Committee-based colour constancy,” in Seventh Color Imaging Conference: Color Science and Engineering Systems, Technology and Applications (Society for Imaging Science and Technology, 1999), pp. 311–313.
  9. S. Bianco, F. Gasparini, and R. Schettini, “Consensus-based framework for illuminant chromaticity estimation,” J. Electron. Imaging 17, 023013 (2008). [CrossRef]
  10. S. Bianco, G. Ciocca, C. Cusano, and R. Schettini, “Improving color constancy using indoor-outdoor image classification,” IEEE Trans. Image Process. 17, 2381–2392 (2008). [CrossRef] [PubMed]
  11. S. Bianco, G. Ciocca, C. Cusano, and R. Schettini, “Automatic color constancy algorithm selection and combination,” Pattern Recogn. 43, 695–705 (2010). [CrossRef]
  12. R. Lu, A. Gijsenij, T. Gevers, K. van de Sande, J. M. Geusebroek, and D. Xu, “Color constancy using stage classification,” in IEEE Conference on Image Processing (IEEE, 2009), pp. 685–688.
  13. E. Land and J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971). [CrossRef] [PubMed]
  14. G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin Inst. 310, 1–26 (1980). [CrossRef]
  15. G. D. Finlayson and E. Trezzi, “Shades of gray and colour constancy,” in Twelfth Color Imaging Conference: Color Science and Engineering Systems, Technology and Applications (Society for Imaging Science and Technology, 2004), pp. 37–41.
  16. J. van de Weijer and T. Gevers, “Color constancy based on the grey-edge hypothesis,” in IEEE Conference on Image Processing (IEEE, 2005), pp. 722–725.
  17. E. Provenzi, C. Gatta, M. Fierro, and A. Rizzi, “A spatially variant white-patch and gray-world method for color image enhancement driven by local contrast,” IEEE Trans. Pattern Anal. Mach. Intell. 30, 1757–1770 (2008). [CrossRef] [PubMed]
  18. J. van de Weijer, C. Schmid, and J. Verbeek, “Using high-level visual information for color constancy,” in IEEE Conference on Computer Vision (IEEE, 2007), pp. 1–8.
  19. J. van de Weijer, C. Schmid, and J. Verbeek, “Edge-based color constancy,” IEEE Trans. Image Process. 30, 2207–2214 (2007). [CrossRef]
  20. H. S. Scholte, S. Ghebreab, A. Smeulders, and V. Lamme, “The parvo and magno-cellular systems encode natural image statistics parameters,” J. Vision 8, 686&686a (2008). [CrossRef]
  21. P. V. Gehler, C. Rother, A. Blake, T. Minka, and T. Sharp, “Bayesian color constancy revisited,” in IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2008), pp. 1–8. [CrossRef]
  22. J. M. Geusebroek and A. W. M. Smeulders, “A six-stimulus theory for stochastic texture,” Int. J. Comput. Vis. 62, 7–16 (2005).
  23. V. Yanulevskaya, J. C. van Gemert, K. Roth, A. K. Herbol, N. Sebe, and J. M. Geusebroek, “Emotional valence categorization using holistic image features,” in IEEE Conference on Image Processing (IEEE, 2008), pp. 101–104. [CrossRef]
  24. J. M. Geusebroek, “Compact object descriptors from local colour invariant histograms,” in British Machine Vision Conference (British Machine Vision Association, 2006), pp. 1029–1038.
  25. J. C. van Gemert, C. G. M. Snoek, C. J. Veenman, A. W. M. Smeulders, and J. M. Geusebroek, “Comparing Compact Codebooks for Visual Categorization,” Comput. Vis. Image Underst. 114, 450–462 (2010). [CrossRef]
  26. S. Lazebnik, C. Schmid, and J. Poncek, “Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories,” in IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2006), pp. 2169–2178.
  27. D. L. Ruderman, T. W. Cronin, and C. C. Chiao, “Statistics of Cone Responses to Natural Images: Implications for Visual Coding,” J. Opt. Soc. Am. A 15, 2036–2045 (1998). [CrossRef]
  28. N. Hrustemovic and M. R. Gupta, “Multiresolutional regularization of local linear regression over adaptive neighborhoods for color management,” in IEEE Conference on Image Processing (IEEE, 2008), pp. 497–500. [CrossRef]
  29. F. Ciurea and B. V. Funt, “A large image database for color constancy research,” in Eleventh Color Imaging Conference: Color Science and Engineering Systems, Technology and Applications (Society for Imaging Science and Technology, 2003), pp. 160–164.
  30. S. D. Hordley and G. D. Finlayson, “Reevaluation of color constancy algorithm performance,” J. Opt. Soc. Am. A 23, 1008–1020 (2006). [CrossRef]
  31. A. Gijsenij, T. Gevers, and M. Lucassen, “A perceptual analysis of distance measures for color constancy algorithms,” J. Opt. Soc. Am. A 26, 2243–2256 (2009). [CrossRef]
  32. B. V. Funt and B. C. Lewis, “Diagonal versus affine transformations for color correction,” J. Opt. Soc. Am. A 17, 2108–2112 (2000). [CrossRef]
  33. F. Porikli, “Integral histogram: a fast way to extract histograms in Cartesian spaces,” in IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2005), pp. 829–836.
  34. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60, 91–110 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited