OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 10 — Oct. 1, 2010
  • pp: 2237–2243

Design of a one-dimensional electromagnetic transparent wall

Zhong Lei Mei, Tiao Ming Niu, Jing Bai, and Tie Jun Cui  »View Author Affiliations

JOSA A, Vol. 27, Issue 10, pp. 2237-2243 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (385 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For a one-dimensional (1D) anisotropic slab, if its electromagnetic parameters satisfy certain conditions, an incident wave can be totally transmitted without any reflections. In this work, a classical method based on analytical results and a transformation optics method using an arbitrary piecewise continuous transformation function are applied to design a 1D electromagnetic transparent wall, whose presence does not disturb the field distribution in the ambient environment. Material parameters and the geometrical requirement of the layered structure using these two different methods are derived, and they agree well with each other. Full-wave simulations validate the transparency of the proposed wall. Because of the simple constitutive parameters and geometry, a transparent structure could be realized using anisotropic and homogeneous materials. The proposed structure has potential applications in radomes, anti-reflection films, and various sensor sectors.

© 2010 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(260.2110) Physical optics : Electromagnetic optics
(310.4165) Thin films : Multilayer design

ToC Category:
Physical Optics

Original Manuscript: May 7, 2010
Revised Manuscript: August 11, 2010
Manuscript Accepted: August 24, 2010
Published: September 22, 2010

Zhong Lei Mei, Tiao Ming Niu, Jing Bai, and Tie Jun Cui, "Design of a one-dimensional electromagnetic transparent wall," J. Opt. Soc. Am. A 27, 2237-2243 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef] [PubMed]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef] [PubMed]
  3. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwells equations,” Photonics Nanostruct. Fundam. Appl. 6, 87–95 (2008). [CrossRef]
  4. W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007). [CrossRef]
  5. Y. Lai, H. Chen, Z. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009). [CrossRef] [PubMed]
  6. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009). [CrossRef]
  7. I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009). [CrossRef] [PubMed]
  8. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photon. 3, 461–463 (2009). [CrossRef]
  9. J. Zhang, J. Huangfu, Y. Luo, H. Chen, J. A. Kong, and B. I. Wu, “Cloak for multilayered and gradually changing media,” Phys. Rev. B 77, 035116 (2008). [CrossRef]
  10. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009). [CrossRef] [PubMed]
  11. H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007). [CrossRef]
  12. H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102, 183903 (2009). [CrossRef] [PubMed]
  13. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nature Mater. 9, 129–132 (2009). [CrossRef]
  14. Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009). [CrossRef] [PubMed]
  15. Z. L. Mei and T. J. Cui, “Design of transparent cloaks with optical transformation,” in Proceedings of the 2008 International Workshop on Metamaterials (IEEE, 2008), pp. 137–139.
  16. G. X. Yu, T. J. Cui, and W. Jiang, “Design of transparent structure using metamaterial,” J. Infrared Milli. Terahz Waves 30, 633–641 (2009). [CrossRef]
  17. Z. L. Mei and T. J. Cui, “Transparent shells-invisible to electromagnetic waves,” Prog. Electromagn. Res. B 18, 149–163 (2009). [CrossRef]
  18. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  19. L. Zhao and T. J. Cui, “Super-resolution imaging of dielectric objects using a slab of left-handed material,” Appl. Phys. Lett. 89, 141904 (2006). [CrossRef]
  20. T. J. Cui and Q. Cheng, “Localization of electromagnetic energy using a left-handed-medium slab,” Phys. Rev. B 71, 045114 (2004). [CrossRef]
  21. G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans. Antennas Propag. 54, 1017–1030 (2006). [CrossRef]
  22. A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag. 54, 1632–1643 (2006). [CrossRef]
  23. A. Alù, M. G. Silveirinha, A. Salandnno, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007). [CrossRef]
  24. A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling, and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003). [CrossRef]
  25. J. Zhao, Y. Chen, and Y. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008). [CrossRef]
  26. W. Yan, M. Yan, and M. Qiu, “Achieving perfect imaging beyond passive and active obstacles by a transformed bilayer lens,” Phys. Rev. B 79, 161101(R) (2009). [CrossRef]
  27. W. Yan, M. Yan, and M. Qiu, “Generalized compensated bilayer structure from the transformation optics perspective,” J. Opt. Soc. Am. B 26, B39–B49 (2009). [CrossRef]
  28. D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys. 7, 162 (2005). [CrossRef]
  29. I. Gallina, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “General class of metamaterial transformation slabs,” Phys. Rev. B 81, 125124 (2010). [CrossRef]
  30. M. Y. Wang, J. J. Zhang, H. S. Chen, Y. Luo, S. Xi, L. X. Ran, and J. A. Kong, “Design and application of a beam shifter by transformation media,” PIER 83, 147–155 (2008). [CrossRef]
  31. S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996). [CrossRef]
  32. Z. S. Sacks, D. M. Kingsland, R. Lee, and J.-F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43, 1460–1463 (1995). [CrossRef]
  33. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006). [CrossRef] [PubMed]
  34. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999). [CrossRef]
  35. Y. Huang, Y. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure of homogeneous isotropic materials,” Opt. Express 15, 11133–11141 (2007). [CrossRef] [PubMed]
  36. B. Wood and J. B. Pendry, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006). [CrossRef]
  37. Y. Zhang, B. Fluegel, and A. Mascarenhas, “Total negative refraction in real crystals for ballistic electrons and light,” Phys. Rev. Lett. 91, 157404 (2003). [CrossRef] [PubMed]
  38. Z. Liu, Z. Lin, and S. T. Chui, “Negative refraction and omnidirectional total transmission at a planar interface associated with a uniaxial medium,” Phys. Rev. B 69, 115402 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited