OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 10 — Oct. 1, 2010
  • pp: 2285–2292

Topography retrieval using different solutions of the transport intensity equation

Shirly V. Pinhasi, Roger Alimi, Lior Perelmutter, and Shalom Eliezer  »View Author Affiliations

JOSA A, Vol. 27, Issue 10, pp. 2285-2292 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (967 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The topography of a phase plate is recovered from the phase reconstruction by solving the transport intensity equation (TIE). The TIE is solved using two different approaches: (a) the classical solution of solving the Poisson differential equation and (b) an algebraic approach with Zernike functions. In this paper we present and compare the topography reconstruction of a phase plate with these solution methods and justify why one solution is preferable over the other.

© 2010 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure

ToC Category:
Image Processing

Original Manuscript: July 27, 2010
Revised Manuscript: August 10, 2010
Manuscript Accepted: August 10, 2010
Published: September 27, 2010

Shirly V. Pinhasi, Roger Alimi, Lior Perelmutter, and Shalom Eliezer, "Topography retrieval using different solutions of the transport intensity equation," J. Opt. Soc. Am. A 27, 2285-2292 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. V. Pinhasi, R. Alimi, S. Eliezer, and L. Perelmutter, “Fast optical computerized topography,” Phys. Lett. A 374, 2798–2800 (2010). [CrossRef]
  2. M. Werdiger, S. Eliezer, Z. Henis, B. Arad, Y. Horovitz, R. Shpitalnik, and S. Maman, “Off-axis holography of laser-induced shock wave targets,” Appl. Phys. Lett. 71, 211–212 (1997). [CrossRef]
  3. M. Werdiger, S. Eliezer, S. Maman, Y. Horovitz, B. Arad, Z. Henis, and I. B. Goldberg, “Development of holographic methods for investigating a moving free surface, accelerated by laser-induced shock waves,” Laser Part. Beams 17, 653–660 (1999). [CrossRef]
  4. D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586–2589 (1998). [CrossRef]
  5. M. Reed Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983). [CrossRef]
  6. N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6–10 (1984). [CrossRef]
  7. K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard x rays,” Phys. Rev. Lett. 77, 2961–2964 (1996). [CrossRef] [PubMed]
  8. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998). [CrossRef]
  9. S. Bajt, A. Barty, K. A. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000). [CrossRef] [PubMed]
  10. A. Tonomura, “Direct observation of vortex motion in high-Tc superconductors by Lorentz microscopy,” Physica B 280, 227–228 (2000). [CrossRef]
  11. R. P. Millane, “Phase retrieval in crystallography and optics,” J. Opt. Soc. Am. A 7, 394–411 (1990). [CrossRef]
  12. C. Roddier and F. Roddier, “Wave-front reconstruction from defocused images and the testing of ground-based optical telescopes,” J. Opt. Soc. Am. A 10, 2277–2287 (1993). [CrossRef]
  13. F. Roddier, “Curvature sensing and compensation: a new concept in adaptive optics,” Appl. Opt. 27, 1223–1225 (1988). [CrossRef] [PubMed]
  14. S. Vinikman-Pinhasi and E. N. Ribak, “Piezoelectric and piezooptic effects in porous silicon,” Appl. Phys. Lett. 88, 111905 (2006). [CrossRef]
  15. S. Gruppetta, L. Koechlin, F. Lacombe, and P. Puget, “Curvature sensor for the measurement of the static corneal topography and the dynamic tear film topography in the human eye,” Opt. Lett. 30, 2757–2759 (2005). [CrossRef] [PubMed]
  16. C. Dorrer and J. D. Zuegel, “Optical testing using the transport-of-intensity equation,” Opt. Express 15, 7165–7175 (2007). [CrossRef] [PubMed]
  17. T. E. Gureyev, A. Roberts, and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials,” J. Opt. Soc. Am. A 12, 1932–1942 (1995). [CrossRef]
  18. T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133, 339–346 (1997). [CrossRef]
  19. K. Ichikawa, A. W. Lohmann, and M. Takeda, “Phase retrieval based on the irradiance transport equation and the Fourier transform method: experiments,” Appl. Opt. 27, 3433–3436 (1988). [CrossRef] [PubMed]
  20. Z. Pek’arek and R. Hrach, “A comparison of advanced Poisson equation solvers applied to the particle-in-cell plasma model,” in WDS’06 Proceedings (2006), pp. 187–192.
  21. L. a. Y. D. Hageman, Applied Iterative Methods (Academic, 1981).
  22. v. F. Zernike, “Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode,” Physica (Amsterdam) 1, 689–704 (1934). [CrossRef]
  23. M. Born and E. Wolf, Principles of Optics (Pergamon, 1970).
  24. R. A. Sweet, W. L. Briggs, S. Oliveira, J. L. Porsche, and T. Turnbull, “FFTs and three-dimensional Poisson solvers for hypercubes,” Parallel Comput. 17, 121–131 (1991). [CrossRef]
  25. R. W. Hockney, “A fast direct solution of Poisson’s equation using Fourier analysis,” J. Assoc. Comput. Mach. 12, 95–113 (1965). [CrossRef]
  26. A. Brandt, “Multi-level adaptive solutions to boundary-value problems,” Math. Comput. 31, 333–390 (1977). [CrossRef]
  27. V. V. Volkov, Y. Zhu, and M. De Graef, “A new symmetrized solution for phase retrieval using the transport of intensity equation,” Micron 33, 411–416 (2002). [CrossRef] [PubMed]
  28. T. E. Gureyev and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation. II. Orthogonal series solution for nonuniform illumination,” J. Opt. Soc. Am. A 13, 1670–1682 (1996). [CrossRef]
  29. M. C. Lai, “A simple compact fourth-order Poisson solver on polar geometry,” J. Comput. Phys. 182, 337–345 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited