OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: 2442–2449

Drastic influence of the half-bowtie resonances on the focusing and collimating capabilities of 2-D extended hemielliptical and hemispherical dielectric lenses

Artem V. Boriskin and Ronan Sauleau  »View Author Affiliations


JOSA A, Vol. 27, Issue 11, pp. 2442-2449 (2010)
http://dx.doi.org/10.1364/JOSAA.27.002442


View Full Text Article

Enhanced HTML    Acrobat PDF (1078 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The interplay between the optical focusing and wavelength-scale resonant features of extended hemielliptical (EHE) and extended hemispherical (EHS) lenses is studied in the two-dimensional (2-D) formulation using highly accurate in-house software based on the Muller boundary integral equations. The influence of the half-bowtie (HBT) resonances on the focusing and collimating capabilities of medium-size EHE and EHS lenses made of silicon is characterized as a function of lens parameters and excitation conditions. As a result, factors determining the parasitic impacts of the HBT resonances on the performance of integrated lens antennas are highlighted.

© 2010 Optical Society of America

OCIS Codes
(040.1240) Detectors : Arrays
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.3630) Optical design and fabrication : Lenses
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: June 1, 2010
Revised Manuscript: September 4, 2010
Manuscript Accepted: September 18, 2010
Published: October 20, 2010

Citation
Artem V. Boriskin and Ronan Sauleau, "Drastic influence of the half-bowtie resonances on the focusing and collimating capabilities of 2-D extended hemielliptical and hemispherical dielectric lenses," J. Opt. Soc. Am. A 27, 2442-2449 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-11-2442


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, “Double slot antennas on extended hemispherical and elliptical silicon dielectric lenses,” IEEE Trans. Microwave Theory Tech. 41, 1738–1749 (1993). [CrossRef]
  2. T. H. Buttgenbach, “An improved solution for integrated array optics in quasioptical mm and submm receivers: The hybrid antenna,” IEEE Trans. Microwave Theory Tech. 41, 1750–1761 (1993). [CrossRef]
  3. S. Raman and G. M. Rebeiz, “Single- and dual-polarized millimeter-wave slot-ring antennas,” IEEE Trans. Antennas Propag. 44, 1438–1444 (1996). [CrossRef]
  4. P. Otero, G. V. Eleftheriades, and J. R. Mosig, “Integrated modified rectangular loop slot antenna on substrate lenses for millimeter- and submillimeter-wave frequencies mixer applications,” IEEE Trans. Antennas Propag. 46, 1489–1497 (1998). [CrossRef]
  5. J. van Rudd and D. Mittleman, “Influence of substrate-lens design in terahertz time-domain spectroscopy,” J. Opt. Soc. Am. B 19, 319–329 (2002). [CrossRef]
  6. G. Godi, R. Sauleau, and D. Thouroude, “Performance of reduced size substrate lens antennas for mm-wave communications,” IEEE Trans. Antennas Propag. 53, 1278–1286 (2005). [CrossRef]
  7. S. Cherednichenko, V. Drakinskiy, T. Berg, P. Khosropanah, and E. Kollberg, “Hot-electron bolometer terahertz mixers for the Herschel Space Observatory,” Rev. Sci. Instrum. 79, 034501 (2008). [CrossRef] [PubMed]
  8. A. Neto, “UWB, non dispersive radiation from the planarly fed leaky lens antenna. Part 1: theory and design,” IEEE Trans. Antennas Propag. 58, 2238–2247 (2010). [CrossRef]
  9. P. Varga, “Focusing of electromagnetic radiation by hyperboloidal and ellipsoidal lenses,” J. Opt. Soc. Am. A 19, 1658–1667 (2002). [CrossRef]
  10. S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175–1182 (2006). [CrossRef]
  11. J. Wiersig, “Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities,” Phys. Rev. Lett. 97, 253901 (2006). [CrossRef]
  12. H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21, 923–934 (2004). [CrossRef]
  13. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998). [CrossRef] [PubMed]
  14. S. Y. Lee, M. S. Kurdoglyan, S. Rim, and C. M. Kim, “Resonance patterns in a stadium-shaped microcavity,” Phys. Rev. A 70, 023809 (2004). [CrossRef]
  15. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Accurate simulation of 2D optical microcavities with uniquely solvable boundary integral equations and trigonometric-Galerkin discretization,” J. Opt. Soc. Am. A 21, 393–402 (2004). [CrossRef]
  16. E. Heyman and L. B. Felson, “Gaussian beam and pulsed-beam dynamics: complex-source and complex-spectrum formulations within and beyond paraxial asymptotics,” J. Opt. Soc. Am. A 18, 1588–1611 (2001). [CrossRef]
  17. A. V. Boriskin, G. Godi, R. Sauleau, and A. I. Nosich, “Small hemielliptic dielectric lens antenna analysis in 2-D: boundary integral equations versus geometrical and physical optics,” IEEE Trans. Antennas Propag. 56, 485–492 (2008). [CrossRef]
  18. A. V. Boriskin, A. Rolland, R. Sauleau, and A. I. Nosich, “Assessment of FDTD accuracy in the compact hemielliptic dielectric lens antenna analysis,” IEEE Trans. Antennas Propag. 56, 758–764 (2008). [CrossRef]
  19. A. V. Boriskin and A. I. Nosich, “Whispering-gallery and Luneburg-lens effects in a beam-fed circularly-layered dielectric cylinder,” IEEE Trans. Antennas Propag. 50, 1245–1249 (2002). [CrossRef]
  20. A. V. Boriskin, R. Sauleau, and A. I. Nosich, “Exact off-resonance near fields of small-size extended hemielliptic 2–D lenses illuminated by plane waves,” J. Opt. Soc. Am. A 26, 259–264 (2009). [CrossRef]
  21. A. V. Boriskin, S. V. Boriskina, A. I. Nosich, T. M. Benson, P. Sewell, and A. Altintas, “Lens or resonator? electromagnetic behavior of an extended hemielliptical lens for a sub-mm wave receiver,” Microwave Opt. Technol. Lett. 43, 515–518 (2004). [CrossRef]
  22. A. D. Semenov, H. Richter, H.-W. Hübers, B. Günther, A. Smirnov, K. S. Il’in, M. Siegel, and J. P. Karamarkovic, “Terahertz performance of integrated lens antennas with a hot-electron bolometer,” IEEE Trans. Microwave Theory Tech. 55, 239–247 (2007). [CrossRef]
  23. A. V. Boriskin, R. Sauleau, and A. I. Nosich, “Performance of hemielliptic dielectric lens antennas with optimal edge illumination,” IEEE Trans. Antennas Propag. 57, 2193–2198 (2009). [CrossRef]
  24. D. F. Filipovic, G. P. Gauthier, S. Raman, and G. M. Rebeiz, “Off-axis properties of silicon and quartz dielectric lens antennas,” IEEE Trans. Antennas Propag. 45, 760–766 (1997). [CrossRef]
  25. J. W. Lamb, “Miscellaneous data on materials for millimeter and submillimeter optics,” Int. J. Infrared Millim. Waves 17, 1997–2034 (1996). [CrossRef]
  26. X. Wu, G. V. Eleftheriades, and T. E. van Deventer-Perkins, “Design and characterization of single and multiple-beam mm-wave circularly polarized substrate lens antennas for wireless communications,” IEEE Trans. Microwave Theory Tech. 49, 431–441 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited