OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: 2450–2458

Comparative study of autodyne and heterodyne laser interferometry for imaging

Eric Lacot, Olivier Jacquin, Grégoire Roussely, Olivier Hugon, and Hugues Guillet de Chatellus  »View Author Affiliations

JOSA A, Vol. 27, Issue 11, pp. 2450-2458 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (280 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For given laser output power, object under investigation, and photodiode noise level, we have theoretically compared the signal-to-noise ratios of a heterodyne scanning imager based on a Michelson interferometer and of an autodyne setup based on the laser optical feedback imaging (LOFI) technique. In both cases, the image is obtained point by point. In the heterodyne configuration, the beating between the reference beam and the signal beam is realized outside the laser cavity (i.e., directly on the detector), while in the autodyne configuration, the wave beating takes place inside the laser cavity and therefore is indirectly detected. In the autodyne configuration, where the laser relaxation oscillations play a leading role, we have compared one-dimensional scans obtained by numerical simulations with different lasers' dynamical parameters. Finally, we have determined the best laser for LOFI applications and the experimental conditions for which the LOFI detection setup (autodyne interferometer) is competitive compared to a heterodyne interferometer.

© 2010 Optical Society of America

OCIS Codes
(280.3420) Remote sensing and sensors : Laser sensors
(110.3175) Imaging systems : Interferometric imaging

ToC Category:
Imaging Systems

Original Manuscript: July 8, 2010
Revised Manuscript: September 17, 2010
Manuscript Accepted: September 17, 2010
Published: October 22, 2010

Eric Lacot, Olivier Jacquin, Grégoire Roussely, Olivier Hugon, and Hugues Guillet de Chatellus, "Comparative study of autodyne and heterodyne laser interferometry for imaging," J. Opt. Soc. Am. A 27, 2450-2458 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T.Yoshizawa, ed., Handbook of Optical Metrology: Principles and Applications (CRC Press, 2009). [CrossRef]
  2. T. Sawatari, “Optical heterodyne scanning microscope,” Appl. Opt. 12, 2768–2772 (1973). [CrossRef] [PubMed]
  3. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994). [CrossRef] [PubMed]
  4. A. D. Aguirre, J. Sawinski, S. W. Huang, C. Zhou, W. Denk, and J. G. Fujimoto, “High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe,” Opt. Express 18, 4222–4239 (2010). [CrossRef] [PubMed]
  5. C. Zhou, T. H. Tsai, D. Adler, H. C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, and J. G. Fujimoto, “Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells,” Opt. Lett. 35, 700–702 (2010). [CrossRef] [PubMed]
  6. V. J. Srinivasan, S. Sakadzic, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express 18, 2477–2494 (2010). [CrossRef] [PubMed]
  7. M. Kempe, W. Rudolph, and E. Welsh, “Comparative study of confocal heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. A 13, 46–52 (1996). [CrossRef]
  8. Y. Niwa, K. Arai, A. Ueda, M. Sakagami, N. Gouda, Y. Kobayashi, Y. Yamada, and T. Yano, “Long-term stabilization of a heterodyne metrology interferometer down to noise level of 20 pm over an hour,” Appl. Opt. 48, 6105–6110 (2009). [CrossRef] [PubMed]
  9. I. Hahn, M. Xeilert, X. Wang, and R. Goullioud, “A heterodyne interferometer for angle metrology,” Rev. Sci. Instrum. 81, 045103 (2010). [CrossRef] [PubMed]
  10. K. Otsuka, “Highly sensitive measurement of Doppler-shift with a microchip solid-state laser,” Jpn. J. Appl. Phys., Part 2 31, L1546–L1548 (1992). [CrossRef]
  11. S. Okamoto, H. Takeda, and F. Kannari, “Ultrahighly sensitive laser-Doppler velocity meter with a diode-pumped Nd:YVO4 microchip laser,” Rev. Sci. Instrum. 66, 3116–3120 (1995). [CrossRef]
  12. K. Otsuka, K. Abe, J. Y. Ko, and T. S. Lim, “Real-time nanometer vibration measurement with self-mixing microchip solid-state laser,” Opt. Lett. 27, 1339–1341 (2002). [CrossRef]
  13. H. Gilles, S. Girard, M. Laroche, and A. Belarouci, “Near-field amplitude and phase measurements using heterodyne optical feedback on solid-state lasers,” Opt. Lett. 33, 1–3 (2008). [CrossRef]
  14. S. Blaize, B. Bérenguier, I. Stéfanon, A. Bruyant, G. Lerondel, P. Royer, O. Hugon, O. Jacquin, and E. Lacot, Opt. Express 16, 11718–11726 (2008). [CrossRef] [PubMed]
  15. E. Lacot, R. Day, and F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24, 744–746 (1999). [CrossRef]
  16. A. Witomski, E. Lacot, O. Hugon, and O. Jacquin, “Synthetic aperture laser optical feedback imaging using galvanometric scanning,” Opt. Lett. 31, 3031–3033 (2006). [CrossRef] [PubMed]
  17. O. Jacquin, S. Heidmann, E. Lacot, and O. Hugon, “Self aligned setup for laser optical feedback imaging insensitive to parasitic optical feedback,” Appl. Opt. 48, 64–68 (2009). [CrossRef]
  18. E. Lacot, R. Day, and F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A 64, 043815 (2001). [CrossRef]
  19. E. Lacot and O. Hugon, “Phase-sensitive laser detection by frequency-shifted optical feedback,” Phys. Rev. A 70, 053824 (2004). [CrossRef]
  20. J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14, 24–26 (1989). [CrossRef] [PubMed]
  21. O. Hugon, I. A. Paun, C. Ricard, B. van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent backscattering microscopy using frequency shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523–528 (2008). [CrossRef]
  22. V. Muzet, E. Lacot, O. Hugon, and Y. Gaillard, “Experimental comparison of shearography and laser optical feedback imaging for crack detection in concrete structures,” Proc. SPIE 5856, 793–799 (2005). [CrossRef]
  23. M. Sargent III, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).
  24. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, 1991).
  25. M. I. Kolobov, L. Davidovich, E. Giacobino, and C. Fabre, “Role of pumping statistics and dynamics of atomic polarization in quantum fluctuations of laser sources,” Phys. Rev. A 47, 1431–1446 (1993). [CrossRef] [PubMed]
  26. In , we have demonstrated that, far from resonance, the nonlinear phase noise of a LOFI setup is less important. The working condition (F+≈7FR) could be of interest for obtaining a shot noise limited setup for phase measurements with a very high precision level.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited