OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: 2459–2467

A method for single image restoration based on the principal ergodic

Guillaume Molodij, Steve Keil, Thierry Roudier, Nadège Meunier, and Sylvain Rondi  »View Author Affiliations

JOSA A, Vol. 27, Issue 11, pp. 2459-2467 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1452 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method to extract from a single image both object and point spread function using low contrast features of an extended field of view. Invoking the principal ergodic on stochastic turbulent phenomena, we show that the aberration parameters, characteristics of the earth’s turbulence, can be recovered from multiple features within an isoplanatic patch. The ensemble statistics is replacing the spatial statistics of a single realization to derive an equivalent modulation transfer function and to apply usual deconvolution techniques such as Richardson–Lucy algorithms. The reliability of this postprocessing treatment has been tested on synthetic data, on solar granulation observations performed at La Lunette Jean Rosch du Pic du Midi, and during the event of the Venus transit at La Tour Solaire de Meudon.

© 2010 Optical Society of America

OCIS Codes
(100.1830) Image processing : Deconvolution
(100.3010) Image processing : Image reconstruction techniques

ToC Category:
Image Processing

Original Manuscript: May 4, 2010
Revised Manuscript: August 15, 2010
Manuscript Accepted: September 2, 2010
Published: October 22, 2010

Guillaume Molodij, Steve Keil, Thierry Roudier, Nadège Meunier, and Sylvain Rondi, "A method for single image restoration based on the principal ergodic," J. Opt. Soc. Am. A 27, 2459-2467 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).
  2. O. Von Der Luhe, “Wavefront error measurement technique using extended, incoherent light sources,” Opt. Eng. (Bellingham) 27, 1078–1087 (1988).
  3. N. Miura and N. Baba, “Segmentation-based multiframe blind deconvolution of solar images,” J. Opt. Soc. Am. A 12, 1858–1866 (1995). [CrossRef]
  4. E. Thiébaut and J. M. Conan, “Strict a priori constraints for maximum-likelihood blind deconvolution,” J. Opt. Soc. Am. A 12, 485–492 (1995). [CrossRef]
  5. M. G. Lofdahl and G. B. Scharmer, “Wavefront sensing and image restoration from focused and defocused solar images,” Astron. Astrophys. Suppl. Ser. 107, 243–264 (1994).
  6. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef] [PubMed]
  7. R. Gerchberg and W. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  8. R. Gonsalves, “Phase retrieval from modulus data,” J. Opt. Soc. Am. 66, 961–964 (1976). [CrossRef]
  9. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. (Bellingham) 21, 829–832 (1982).
  10. R. A. Gonsalves, “Phase retrieval by differential intensity measurements,” J. Opt. Soc. Am. A 4, 166–170 (1987). [CrossRef]
  11. R. Kupke, F. Roddier, and D. L. Mickey, “Wavefront curvature sensing on extended arbitrary scenes: simulation results,” Proc. SPIE 3353, 918–929 (1998). [CrossRef]
  12. O. Von Der Luhe, “Speckle imaging of solar small scale structure I—Methods,” Astron. Astrophys. 268, 374–390 (1993).
  13. H. M. Adorf and M. J. Oldfield, “Paralellism for HST image restoration,” in Astronomical Data Analysis Software and Systems I, ASP Conference Series, D.M.Worrall, C.Biemesderfer, and J.Barnes, eds. (1992), Vol. 25, pp. 215–225.
  14. R. White, “Improvements to the Richardson–Lucy-method,” in Newsletter of STScI’s Image Restoration Project (1993), Vol. 1, pp. 11–23.
  15. G. Molodij, F. Roddier, R. Kupke, and D. L. Mickey, “Curvature wavefront sensor for solar adaptive optics,” Sol. Phys. 206, 189–207 (2002). [CrossRef]
  16. F. Roddier, M. Northcott, and J. E. Graves, “A simple low-order adaptive optics system for near-infrared applications,” Astron. Soc. Pac. 103, 131–149 (1991). [CrossRef]
  17. M. Teague, “Irradiance moments: their propagation and use for unique retrieval of phase,” J. Opt. Soc. Am. 72, 1199–1209 (1982). [CrossRef]
  18. F. Roddier, “Error propagation in a close-loop adaptive optics system: a comparison between Shack–Hartmann and curvature wave-front sensor,” Opt. Commun. 113, 357–359 (1995). [CrossRef]
  19. L. Schwartz, Théorie des distributions, (Academic, 1989).
  20. M. Rieutord, T. Roudier, H. G. Ludwig, A. Nordlund, and R. Stein, “Are granules good tracers of solar surface velocity fields?” Astron. Astrophys. 377, L14–L17 (2001). [CrossRef]
  21. J. Y. Wang and J. K. Markey, “Modal compensation of atmospheric turbulence phase distortion,” J. Opt. Soc. Am. 68, 78–87 (1978). [CrossRef]
  22. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  23. G. Molodij and J. Rayrole, “Performance analysis for T.H.E.M.I.S (*) image stabilizer optical system. II. Anisoplanatism limitations (*) Telescope héliographique pour l’étude du magnetisme et des instabilites de l’atmosphere solaire,” Astron. Astrophys. Suppl. Ser. 28, 229–244 (1996).
  24. R. Barletti, G. Ceppatelli, E. Moroder, L. Paterno, and A. Righini, Site Testing at Tenerife by Balloon Borne Radiosonder and Optical Quality of the Atlantic Air Mass over the Canary Island, Rep. 102 (JOSO, 1973).
  25. T. Roudier, F. Ligniéres, M. Rieutord, P. N. Brandt, and J. M. Malherbe, “Families of fragmenting granules and their relation to meso- and supergranular flow fields,” Astron. Astrophys. 409, 299–308 (2003). [CrossRef]
  26. L. J. November, “Measurement of geometric distortion in a turbulent atmosphere,” Appl. Opt. 25, 392–397 (1986). [CrossRef] [PubMed]
  27. A. M. Title, T. D. Tarbell, K. P. Topka, S. H. Ferguson, R. A. Shine, and SOUP Team, “Statistical properties of solar granulation derived from the SOUP instrument on Spacelab 2,” Astrophys. J. 336, 475–494 (1989). [CrossRef]
  28. N. Meunier, S. Rondi, M. Rieutord, and F. Beigbeder, “CALAS a camera for the large-scale of the solar surface” in ASP Conference Series, K.Sankarasubramanian, M.Pen, and A.Pevtsov, eds. (2005), Vol. 346, p. 53.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited