OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: 2506–2513

General astigmatic transform of Hermite–Laguerre–Gaussian beams

Eugeny Abramochkin, Evgeniya Razueva, and Vladimir Volostnikov  »View Author Affiliations


JOSA A, Vol. 27, Issue 11, pp. 2506-2513 (2010)
http://dx.doi.org/10.1364/JOSAA.27.002506


View Full Text Article

Enhanced HTML    Acrobat PDF (255 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The general astigmatic transform, or two-dimensional non-separable linear canonical transform of a Hermite–Laguerre–Gaussian beam, is investigated by theoretical means. Some corollaries that apply to Hermite–Gaussian and Laguerre–Gaussian beam propagation are presented and discussed.

© 2010 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(070.2590) Fourier optics and signal processing : ABCD transforms
(350.5500) Other areas of optics : Propagation
(350.6980) Other areas of optics : Transforms

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: August 4, 2010
Manuscript Accepted: September 18, 2010
Published: October 27, 2010

Citation
Eugeny Abramochkin, Evgeniya Razueva, and Vladimir Volostnikov, "General astigmatic transform of Hermite–Laguerre–Gaussian beams," J. Opt. Soc. Am. A 27, 2506-2513 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-11-2506


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966). [CrossRef]
  2. Y. Cai and C. Chen, “Paraxial propagation of a partially coherent Hermite-Gaussian beam through aligned and misaligned ABCD optical systems,” J. Opt. Soc. Am. A 24, 2394–2401 (2007). [CrossRef]
  3. E. Abramochkin and V. Volostnikov, “Spiral-type beams,” Opt. Commun. 102, 336–350 (1993). [CrossRef]
  4. E. Abramochkin and V. Volostnikov, “Spiral-type beams: optical and quantum aspects,” Opt. Commun. 125, 302–323 (1996). [CrossRef]
  5. E. G. Abramochkin and V. G. Volostnikov, “Spiral light beams,” Phys. Usp. 47, 1177–1203 (2004). [CrossRef]
  6. M. A. Bandres and J. C. Gutiérrez-Vega, “Ince–Gaussian beams,” Opt. Lett. 29, 144–146 (2004). [CrossRef]
  7. M. A. Bandres and J. C. Gutiérrez-Vega, “Ince–Gaussian modes of the paraxial wave equation and stable resonators,” J. Opt. Soc. Am. A 21, 873–880 (2004). [CrossRef]
  8. E. G. Abramochkin, “Hermite–Laguerre–Gaussian functions,” Vestnik Samara State Univ. 4, 19–41 (2001). [in Russian]
  9. E. G. Abramochkin and V. G. Volostnikov, “Generalized Gaussian beams,” J. Opt. A, Pure Appl. Opt. 6, S157–S161 (2004). [CrossRef]
  10. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007). [CrossRef]
  11. E. Karimi, G. Zito, B. Piccirillo, L. Marrucci, and E. Santamato, “Hypergeometric-Gaussian modes,” Opt. Lett. 32, 3053–3055 (2007). [CrossRef]
  12. V. V. Kotlyar, R. V. Skidanov, S. N. Khonina, and V. A. Soifer, “Hypergeometric modes,” Opt. Lett. 32, 742–744 (2007). [CrossRef]
  13. A. Wünsche, “Generalized Gaussian beam solutions of paraxial optics and their connection to a hidden symmetry,” J. Opt. Soc. Am. A 6, 1320–1329 (1989). [CrossRef]
  14. T. Alieva and M. J. Bastiaans, “Mode mapping in paraxial lossless optics,” Opt. Lett. 30, 1461–1463 (2005). [CrossRef]
  15. M. A. Bandres and J. C. Gutiérrez-Vega, “Cartesian beams,” Opt. Lett. 32, 3459–3461 (2007). [CrossRef]
  16. M. A. Bandres and J. C. Gutiérrez-Vega, “Circular beams,” Opt. Lett. 33, 177–179 (2008). [CrossRef]
  17. M. A. Bandres and J. C. Gutiérrez-Vega, “Elliptical beams,” Opt. Express 16, 21087–21092 (2008). [CrossRef]
  18. E. Abramochkin and V. Volostnikov, “Beam transformations and nontransformed beams,” Opt. Commun. 83, 123–135 (1991). [CrossRef]
  19. S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970). [CrossRef]
  20. Yu. A. Anan’ev, Optical Resonators and Gaussian beams (Nauka, Moscow, 1990). [in Russian].
  21. M. Santarsiero, “Propagation of generalized Bessel-Gauss beams through ABCD optical system,” Opt. Commun. 132, 1–7 (1996). [CrossRef]
  22. A. Belafhal and L. Dalil-Essakali, “Collins formula and propagation of Bessel-modulated Gaussian light beams through an ABCD optical system,” Opt. Commun. 177, 181–188 (2000). [CrossRef]
  23. G. Zhou, “Fractional Fourier transform of Ince-Gaussian beams,” J. Opt. Soc. Am. A 26, 2586–2591 (2009). [CrossRef]
  24. M. A. Bandres and J. C. Gutiérrez-Vega, “Airy-Gauss beams and their transformation by paraxial optical systems,” Opt. Express 15, 16719–16728 (2007). [CrossRef]
  25. T. Alieva and M. J. Bastiaans, “Alternative representation of the linear canonical integral transform,” Opt. Lett. 30, 3302–3304 (2005). [CrossRef]
  26. A. Koç, H. M. Ozaktas, and L. Hesselink, “Fast and accurate computation of two-dimensional non-separable quadratic-phase integrals,” J. Opt. Soc. Am. A 27, 1288–1302 (2010). [CrossRef]
  27. E. G. Abramochkin and V. G. Volostnikov, Modern Theory of Gaussian Beams (Fizmatlit, Moscow, 2010). [in Russian].
  28. E. G. Abramochkin and V. G. Volostnikov, “Generalized Hermite-Laguerre-Gauss beams,” Phys. Wave Phenom. 18, 14–22 (2010). [CrossRef]
  29. A. Wada, T. Ohtani, Y. Miyamoto, and M. Takeda, “Propagation analysis of the Laguerre-Gaussian beam with astigmatism,” J. Opt. Soc. Am. A 22, 2746–2755 (2005). [CrossRef]
  30. F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64, 491–495 (1987). [CrossRef]
  31. C. F. R. Caron and R. M. Potvliege, “Bessel-modulated Gaussian beams with quadratic radial dependence,” Opt. Commun. 164, 83–93 (1999). [CrossRef]
  32. R. M. Potvliege, “Waveletlike basis function approach to the propagation of paraxial beams,” J. Opt. Soc. Am. A 17, 1043–1047 (2000). [CrossRef]
  33. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series; Vol. 2: Special Functions (Gordon and Breach Sci. Publ., 1986).
  34. Yu. A. Brychkov, Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas (CRC Press, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited