OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: A171–A181

Intrinsic limitations of Shack–Hartmann wavefront sensing on an extended laser guide source

Damien Gratadour, Eric Gendron, and Gérard Rousset  »View Author Affiliations

JOSA A, Vol. 27, Issue 11, pp. A171-A181 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (890 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we investigate the behavior of various centroiding methods (weighted center of gravity, matched filtering, and correlation) classically used in Shack–Hartmann wavefront sensing when dealing with an elongated asymmetric spot. We study the impact of model errors on these centroiding methods at high signal-to-noise ratios, and, using a one-dimensional formalism, we show that the associated estimates all suffer from a bias uncorrelated with the actual spot displacement if its shape is not known precisely. Additionally, we show that the correlation method provides an estimate with a unitary gain whatever the parameters used, while the other two methods introduce a non-unitary gain in the estimation process. Finally, we show that the sampling of the spot structures after filtering by some convolution kernels is crucial to get an unbiased estimate of the spot displacement.

© 2010 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing

Original Manuscript: March 29, 2010
Revised Manuscript: July 20, 2010
Manuscript Accepted: July 21, 2010
Published: September 22, 2010

Damien Gratadour, Eric Gendron, and Gérard Rousset, "Intrinsic limitations of Shack–Hartmann wavefront sensing on an extended laser guide source," J. Opt. Soc. Am. A 27, A171-A181 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Proceedings of the First International Conference on Adaptive Optics for Extremely Large Telescopes, Y.Clénet, J.-M.Conan, T.Fusco, and G.Rousset, eds. (EDP Sciences, http://ao4elt.edpsciences.org/(2010). [PubMed]
  2. M. Nicolle, T. Fusco, G. Rousset, and V. Michau, “Improvement of Shack–Hartmann wave-front sensor measurement for extreme adaptive optics,” Opt. Lett. 29, 2743–2745 (2004). [CrossRef] [PubMed]
  3. L. A. Poyneer, “Scene-based Shack–Hartmann wave-front sensing: analysis and simulation,” Appl. Opt. 42, 5807–5815 (2003). [CrossRef] [PubMed]
  4. L. Gilles and B. L. Ellerbroek, “Shack–Hartmann wavefront sensing with elongated sodium laser beacons: centroiding versus matched filtering,” Appl. Opt. 45, 6568–6576 (2006). [CrossRef] [PubMed]
  5. S. J. Thomas, S. Adkins, D. T. Gavel, T. Fusco, and V. Michau, “Study of optimal wavefront sensing with elongated laser guide stars,” Mon. Not. R. Astron. Soc. 387, 173–187 (2008). [CrossRef]
  6. R. Conan, O. Lardiere, G. Herriot, C. Bradley, and K. Jackson, “Experimental assessment of the matched filter for laser guide star wavefront sensing,” Appl. Opt. 48, 1198–1211 (2009). [CrossRef]
  7. O. Lardière, R. Conan, C. Bradley, K. Jackson, and P. Hampton, “Radial thresholding to mitigate laser guide star aberrations on centre-of-gravity-based Shack–Hartmann wavefront sensors,” Mon. Not. R. Astron. Soc. 398, 1461–1467 (2009). [CrossRef]
  8. D. Gratadour, E. Gendron, and G. Rousset, “Symmetrically weighted center of gravity for Shack–Hartmann wavefront sensing on a laser guide star,” Proc. SPIE7736 (to be published).
  9. D. Gratadour, L. M. Mugnier, and D. Rouan, “Sub-pixel image registration with a maximum likelihood estimator. Application to the first adaptive optics observations of arp 220 in the l’ band,” Astron. Astrophys. 443, 357–365 (2005). [CrossRef]
  10. L. Gilles and B. L. Ellerbroek, “Constrained matched filtering for extended dynamic range and improved noise rejection for Shack–Hartmann wavefront sensing,” Opt. Lett. 33, 1159–1161 (2008). [CrossRef] [PubMed]
  11. P. S. Argall, O. N. Vassiliev, R. J. Sica, and M. M. Mwangi, “Lidar measurements taken with a large-aperture liquid mirror. 2. Sodium resonance-fluorescence system,” Appl. Opt. 39, 2393–2400 (2000). [CrossRef]
  12. S. J. Thomas, D. T. Gavel, and B. Kibrick, “Analysis of on-sky sodium profile data from lick observatory,” Appl. Opt. 49, 394–402 (2010). [CrossRef] [PubMed]
  13. L. Schreiber, I. Foppiani, C. Robert, E. Diolaiti, J.-M. Conan, and M. Lombini, “Laser guide stars for extremely large telescopes: efficient Shack–Hartmann wavefront sensor design using the weighted centre-of-gravity algorithm,” Mon. Not. R. Astron. Soc. 396, 1513–1521 (2009). [CrossRef]
  14. C. D’Orgeville, F. J. Rigaut, and B. L. Ellerbroek, “LGS AO photon return simulations and laser requirements for the Gemini LGS AO program,” Proc. SPIE 4007, 131–141 (2000). [CrossRef]
  15. N. Védrenne, V. Michau, C. Robert, and J. M. Conan, “Shack–Hartmann wavefront estimation with extended sources: anisoplanatism influence,” J. Opt. Soc. Am. A 24, 2980–2993 (2007). [CrossRef]
  16. D. Gratadour and F. J. Rigaut, “Online centroid gain determination for LGS AO systems,” in Adaptive Optics: Analysis and Methods, OSA 2007 Technical Digest Series (Optical Soceity of America, 2007), paper PMA4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited