OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: A19–A28

Impact of sodium laser guide star fratricide on multi-conjugate adaptive optics systems

Lianqi Wang, Angel Otarola, and Brent Ellerbroek  »View Author Affiliations

JOSA A, Vol. 27, Issue 11, pp. A19-A28 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (612 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laser beams projected from the ground to form sodium layer laser guide stars (LGSs) for adaptive optics (AO) systems experience scattering and absorption that reduce their intensity as they propagate upward through the atmosphere. Some fraction of the scattered light will be collected by the other wavefront sensors and causes additional background in parts of the pupil. This cross-talk between different LGS wavefront sensors is referred to as the fratricide effect. In this paper we quantify the magnitude of four different sources of scattering/absorption and backscattering, and we evaluate their impact on performance with various zenith angles and turbulence profiles for one particular AO system. The resulting wavefront error for the Thirty Meter Telescope (TMT) multi-conjugate AO (MCAO) system, NFIRAOS, is on the order of 5 to 20 nm RMS, provided that the mean background from the fratricide effect can be calibrated and subtracted with an accuracy of 80%. We also present the impact on system performance of momentary variations in LGS signal levels due to variations in cirrus absorption or laser power, and we show that this affects the performance more than does an equal variation in the level of the fratricide.

© 2010 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing

Original Manuscript: April 12, 2010
Manuscript Accepted: June 1, 2010
Published: June 23, 2010

Lianqi Wang, Angel Otarola, and Brent Ellerbroek, "Impact of sodium laser guide star fratricide on multi-conjugate adaptive optics systems," J. Opt. Soc. Am. A 27, A19-A28 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, C. E. Max, and D. M. Pennington, “The W. M. Keck observatory laser guide star adaptive optics system: overview,” Psychol. Forsch. 118, 297–309 (2006).
  2. M. Boccas, F. Rigaut, M. Bec, B. Irarrazaval, E. James, A. Ebbers, C. d’Orgeville, K. Grace, G. Arriagada, S. Karewicz, M. Sheehan, J. White, and S. Chan, “Laser guide star upgrade of Altair at Gemini North,” Proc. SPIE 6272, 62723L (2006). [CrossRef]
  3. M. Le Louarn, N. N. Hubin, and R. Arsenault, “Adaptive optics for second-generation VLT instruments,” Proc. SPIE 5490, 248–259 (2004). [CrossRef]
  4. B. Ellerbroek, S. Adkins, D. Andersen, J. Atwood, C. Boyer, P. Byrnes, R. Conan, L. Gilles, G. Herriot, P. Hickson, E. Hileman, D. Joyce, B. Leckie, M. Liang, T. Pfrommer, J.-C. Sinquin, J.-P. Veran, L. Wang, and P. Welle, “Progress toward developing the TMT adaptive optical systems and their components,” Proc. SPIE 7015, 70150R (2008). [CrossRef]
  5. E. Diolaiti, J.-M. Conan, I. Foppiani, M. Lombini, C. Petit, C. Robert, L. Schreiber, P. Ciliegi, E. Marchetti, M. Bellazzini, L. Busoni, S. Esposito, T. Fusco, N. Hubin, F. Quiros-Pacheco, A. Baruffolo, S. D’Odorico, J. Farinato, B. Neichel, R. Ragazzoni, C. Arcidiacono, V. Biliotti, G. Bregoli, G. Cosentino, and G. Innocenti, “A preliminary overview of the multiconjugate adaptive optics module for the E-ELT,” Proc. SPIE 7015, 70150U (2008). [CrossRef]
  6. H. C. V. de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  7. E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles (1976).
  8. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995). [CrossRef] [PubMed]
  9. S. S. Srivastava, N. K. Vyas, J. Rai, and B. Kartikeyan, “On the different approaches of Rayleigh optical depth determination,” Adv. Space Res. 44, 1058–1066 (2009). [CrossRef]
  10. U.S. Standard Atmosphere Supplement (U.S. Government Print Office, 1966).
  11. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics—From Air Pollution to Climate Change (Wiley, 2006).
  12. R. J. Sica, Z. A. Zylawy, and P. S. Argall, “Ozone corrections for Rayleigh-scatter temperature determinations in the middle atmosphere,” J. Atmos. Oceanic Technol. 18-7, 1223–1228 (2001). [CrossRef]
  13. A. T. Young, http://mintaka.sdsu.edu/GF/explain/extinction/extintro.html (2008).
  14. Gemini, http://sciopsedit.gemini.edu/sciops/telescopes-and-sites/observing-condition-constraints/extinction (2009).
  15. G. E. Shaw, “Aerosols at Mauna Loa: optical properties,” J. Atmos. Sci. 36, 862–869 (1979). [CrossRef]
  16. T. I. G. Eguchi and Nawo Yokota, “Characteristics of cirrus clouds from icesat/glas observations,” Geophys. Res. Lett. 34, L09810 (2007). [CrossRef]
  17. L. Gilles and B. L. Ellerbroek, “Constrained matched filtering for extended dynamic range and improved noise rejection for Shack–Hartmann wavefront sensing,” Opt. Lett. 33, 1159–1161 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited