OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: A265–A277

Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking

R. Daniel Ferguson, Zhangyi Zhong, Daniel X. Hammer, Mircea Mujat, Ankit H. Patel, Cong Deng, Weiyao Zou, and Stephen A. Burns  »View Author Affiliations


JOSA A, Vol. 27, Issue 11, pp. A265-A277 (2010)
http://dx.doi.org/10.1364/JOSAA.27.00A265


View Full Text Article

Enhanced HTML    Acrobat PDF (1369 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a new, unified implementation of the adaptive optics scanning laser ophthalmoscope (AOSLO) incorporating a wide-field line-scanning ophthalmoscope (LSO) and a closed-loop optical retinal tracker. AOSLO raster scans are deflected by the integrated tracking mirrors so that direct AOSLO stabilization is automatic during tracking. The wide-field imager and large-spherical-mirror optical interface design, as well as a large-stroke deformable mirror (DM), enable the AOSLO image field to be corrected at any retinal coordinates of interest in a field of > 25 deg . AO performance was assessed by imaging individuals with a range of refractive errors. In most subjects, image contrast was measurable at spatial frequencies close to the diffraction limit. Closed-loop optical (hardware) tracking performance was assessed by comparing sequential image series with and without stabilization. Though usually better than 10 μ m rms, or 0.03 deg , tracking does not yet stabilize to single cone precision but significantly improves average image quality and increases the number of frames that can be successfully aligned by software-based post-processing methods. The new optical interface allows the high-resolution imaging field to be placed anywhere within the wide field without requiring the subject to re-fixate, enabling easier retinal navigation and faster, more efficient AOSLO montage capture and stitching.

© 2010 Optical Society of America

OCIS Codes
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.5755) Medical optics and biotechnology : Retina scanning
(110.1080) Imaging systems : Active or adaptive optics

History
Original Manuscript: April 26, 2010
Revised Manuscript: August 16, 2010
Manuscript Accepted: August 17, 2010
Published: October 18, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Citation
R. Daniel Ferguson, Zhangyi Zhong, Daniel X. Hammer, Mircea Mujat, Ankit H. Patel, Cong Deng, Weiyao Zou, and Stephen A. Burns, "Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking," J. Opt. Soc. Am. A 27, A265-A277 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-11-A265


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. W. Dreher, J. F. Bille, and R. N. Weinreb, “Active optical depth resolution improvement of the laser tomographic scanner,” Appl. Opt. 28, 804–808 (1989). [CrossRef] [PubMed]
  2. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997). [CrossRef]
  3. A. Roorda, F. Romero-Borja, W. I. Donnelly, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002). [PubMed]
  4. B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004). [CrossRef] [PubMed]
  5. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005). [CrossRef] [PubMed]
  6. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14, 4380–4394 (2006). [CrossRef] [PubMed]
  7. S. A. Burns, R. Tumbar, A. E. Elsner, R. D. Ferguson, and D. X. Hammer, “Large field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24, 1313–1326 (2007). [CrossRef]
  8. C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, “Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging,” J. Opt. Soc. Am. A 24, 1327–1336 (2007). [CrossRef]
  9. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16, 8126–8143 (2008). [CrossRef] [PubMed]
  10. E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh-resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16, 11083–11094 (2008). [CrossRef] [PubMed]
  11. Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31, 1268–1270 (2006). [CrossRef] [PubMed]
  12. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15, 16141–16160 (2007). [CrossRef] [PubMed]
  13. K. Grieve and A. Roorda, “Intrinsic signals from human cone photoreceptors,” Invest. Ophthalmol. Visual Sci. 49, 713–719 (2008). [CrossRef]
  14. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999). [CrossRef] [PubMed]
  15. J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101, 8461–8466 (2004). [CrossRef] [PubMed]
  16. H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005). [CrossRef] [PubMed]
  17. A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vision 2, 404–412 (2002). [CrossRef]
  18. W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, “Retinal microscotomas revealed with adaptive-optics microflashes,” Invest. Ophthalmol. Visual Sci. 47, 4160–4167 (2006). [CrossRef]
  19. N. M. Putnum, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vision 5, 632–639 (2005).
  20. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14, 7144–7158 (2006). [CrossRef] [PubMed]
  21. J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50, 1350–1359 (2009). [CrossRef]
  22. D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Visual Sci. 49, 467–473 (2008). [CrossRef]
  23. J. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112, 2219–2224 (2005). [CrossRef] [PubMed]
  24. Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express 16, 12746–12756 (2008). [CrossRef] [PubMed]
  25. M. K. Yoon, A. Roorda, Y. Zhang, C. Nakanishi, L.-J. C. Wong, Q. Zhang, L. Gillum, A. Green, and J. L. Duncan, “Adaptive optics scanning laser ophthalmoscopy images demonstrate abnormal cone structure in a family with the mitochondrial DNA T8993C mutation,” Invest. Ophthalmol. Visual Sci. 50, 1838–1847 (2009). [CrossRef]
  26. S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Visual Sci. 47, 2080–2092 (2006). [CrossRef]
  27. J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113, 1014–1019 (2006). [CrossRef]
  28. A. Roorda, Y. Zhang, and J. L. Duncan, “High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease,” Invest. Ophthalmol. Visual Sci. 48, 2297–2303 (2007). [CrossRef]
  29. A. Gomez-Vieyra, A. Dubra, D. Malacara-Hernandez, , “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express 17(21), 18906–18919 (2009). [CrossRef]
  30. J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. H. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Visual Sci. 48, 3283–3291 (2007). [CrossRef]
  31. D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Visual Sci. 49, 2061–2070 (2008). [CrossRef]
  32. S. S. Choi, R. J. Zawadzki, J. L. Keltner, and J. S. Werner, “Changes in cellular structures revealed by ultra-high-resolution retinal imaging in optic neuropathies,” Invest. Ophthalmol. Visual Sci. 49, 2103–2119 (2008). [CrossRef]
  33. P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 3, 024008 (2008). [CrossRef]
  34. B. Cense, E. Koperda, J. M. Brown, O. P. Kocaoglu, W. Gao, R. S. Jonnal, and D. T. Miller, “Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources,” Opt. Express 17, 4095–4111 (2009). [CrossRef] [PubMed]
  35. M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “high-resolution multimodal clinical ophthalmic imaging system,” Opt. Express 18(11), 2010. [CrossRef] [PubMed]
  36. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27, 1537–1539 (2002). [CrossRef]
  37. E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express 14, 8900–8917 (2006). [CrossRef] [PubMed]
  38. F. Vargas-Martin, P. M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998). [CrossRef]
  39. T. Shirai, “Liquid-crystal adaptive optics based on feedback interferometry for high-resolution retinal imaging,” Appl. Opt. 41, 4013 (2002). [CrossRef] [PubMed]
  40. A. Dubra, D. C. Gray, J. I. W. Morgan, and D. R. Williams, “MEMS in adaptive optics scanning laser ophthalmoscopy: achievements and challenges,” Proc. SPIE 6888, 688803–688803-13 (2008). [CrossRef]
  41. W. Zou, X. Qi, and S. A. Burns, “Wavefront-aberration sorting and correction for a dual-deformable-mirror adaptive-optics system,” Opt. Lett. 33, 2602–2604 (2008). [CrossRef] [PubMed]
  42. D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11, 041126 (2006). [CrossRef] [PubMed]
  43. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14, 3354–3367 (2006). [CrossRef] [PubMed]
  44. S. A. Burns, W. Zou, H. Song, and Z. Zhong, “Wavelength variable adaptive optics imaging using a supercontinuum light source,” Invest. Ophthalmol. Visual Sci.2009; 50: ARVO E-Abstract 1053/D961.
  45. C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors—variation with eccentricity and evidence for local anisotropy,” Visual Neurosci. 9, 169–180 (1992). [CrossRef]
  46. T. Y. P. Chui, H. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Visual Sci. 49, 4679–4687 (2008). [CrossRef]
  47. S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high-resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005). [CrossRef]
  48. A. Raghunandan, J. Frasier, S. Poonja, A. Roorda, and S. B. Stevenson, “Psychophysical measurements of referenced and unreferenced motion processing using high-resolution retinal imaging,” J. Vision 8, 1–11 (2008). [CrossRef]
  49. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14), 487–497 (2006). [CrossRef] [PubMed]
  50. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15, 13731–13744 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited