OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: A48–A55

Adaptive optics binocular visual simulator to study stereopsis in the presence of aberrations

Enrique J. Fernández, Pedro M. Prieto, and Pablo Artal  »View Author Affiliations


JOSA A, Vol. 27, Issue 11, pp. A48-A55 (2010)
http://dx.doi.org/10.1364/JOSAA.27.000A48


View Full Text Article

Enhanced HTML    Acrobat PDF (307 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A binocular adaptive optics visual simulator has been devised for the study of stereopsis and of binocular vision in general. The apparatus is capable of manipulating the aberrations of each eye separately while subjects perform visual tests. The correcting device is a liquid-crystal-on-silicon spatial light modulator permitting the control of aberrations in the two eyes of the observer simultaneously in open loop. The apparatus can be operated as an electro-optical binocular phoropter with two micro-displays projecting different scenes to each eye. Stereo-acuity tests (three-needle test and random-dot stereograms) have been programmed for exploring the performance of the instrument. As an example, stereo-acuity has been measured in two subjects in the presence of defocus and/or trefoil, showing a complex relationship between the eye’s optical quality and stereopsis. This instrument might serve for a better understanding of the relationship of binocular vision and stereopsis performance and the eye’s aberrations.

© 2010 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(330.1400) Vision, color, and visual optics : Vision - binocular and stereopsis
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

History
Original Manuscript: March 31, 2010
Revised Manuscript: June 25, 2010
Manuscript Accepted: June 28, 2010
Published: July 22, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Enrique J. Fernández, Pedro M. Prieto, and Pablo Artal, "Adaptive optics binocular visual simulator to study stereopsis in the presence of aberrations," J. Opt. Soc. Am. A 27, A48-A55 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-11-A48


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Artal and R. Navarro, “Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression,” J. Opt. Soc. Am. A 11, 246–249 (1994). [CrossRef]
  2. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997). [CrossRef]
  3. P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006). [CrossRef]
  4. P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2, 586–589 (2008). [CrossRef]
  5. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wavefront sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994). [CrossRef]
  6. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000). [CrossRef]
  7. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001). [CrossRef]
  8. E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13, 400–409 (2005). [CrossRef] [PubMed]
  9. E. J. Fernández and P. Artal, “Ocular aberrations up to the infrared range: from 632.8to1070 nm,” Opt. Express 16, 21199–21208 (2008). [CrossRef] [PubMed]
  10. P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by internal optics in the human eye,” J. Vision 1, 1–8 (2001). [CrossRef]
  11. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002). [CrossRef]
  12. M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, “Statistical description of the wave front aberration in the human eye,” Opt. Lett. 27, 37–39 (2002). [CrossRef]
  13. Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22, 103–112 (2002). [CrossRef] [PubMed]
  14. J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46, 3009–3016 (2006). [CrossRef] [PubMed]
  15. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997). [CrossRef]
  16. E. J. Fernández, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001). [CrossRef]
  17. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643 (2001). [CrossRef] [PubMed]
  18. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27, 1537–1539 (2002). [CrossRef]
  19. E. J. Fernández and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056–1069 (2003). [CrossRef] [PubMed]
  20. P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004). [CrossRef] [PubMed]
  21. E. Dalimier and C. Dainty, “Comparative analysis of deformable mirrors for ocular adaptive optics,” Opt. Express 13, 4275–4285 (2005). [CrossRef] [PubMed]
  22. D. Miller, L. Thibos, and X. Hong, “Requirements for segmented correctors for diffraction-limited performance in the human eye,” Opt. Express 13, 275–289 (2005). [CrossRef] [PubMed]
  23. E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express 14, 8900–8917 (2006). [CrossRef] [PubMed]
  24. W. Zou, X. Qi, and S. A. Burns, “Wavefront-aberration sorting and correction for a dual-deformable-mirror adaptive-optics system,” Opt. Lett. 33, 2602–2604 (2008). [CrossRef] [PubMed]
  25. E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, 634–638 (2002).
  26. P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45, 4601–4610 (2004). [CrossRef]
  27. S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, “Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements,” Opt. Express 15, 16177–16188 (2007). [CrossRef] [PubMed]
  28. C. Cánovas, P. M. Prieto, S. Manzanera, A. Mira, and P. Artal, “Hybrid adaptive-optics visual simulator,” Opt. Lett. 35, 196–198 (2010). [CrossRef] [PubMed]
  29. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004). [CrossRef]
  30. E. J. Fernández and P. Artal, “Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics,” J. Opt. Soc. Am. A 22, 1732–1738 (2005). [CrossRef]
  31. P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refractive Surg. 33, 1721–1726 (2007). [CrossRef]
  32. L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 12654–12661 (2007). [CrossRef] [PubMed]
  33. P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18, 1637–1648 (2010). [CrossRef] [PubMed]
  34. B. Julesz, Foundations of Ciclopean Perception (Univ. of Chicago Press, 1971).
  35. R. W. Reading, Binocular Vision: Foundations and Applications (Butterworths, 1983).
  36. I. P. Howard and B. J. Rogers, Binocular Vision and Stereopsis (Oxford Psychology Series No. 29, Oxford Univ. Press, 1995).
  37. K. M. Hampson, S. S. Chin, and E. A. H. Mallen, “Binocular Shack–Hartmann sensor for the human eye,” J. Mod. Opt. 55, 703–716 (2008). [CrossRef]
  38. M. Kobayashi, N. Nakazawa, T. Yamaguchi, T. Otaki, Y. Hirohara, and T. Mihashi, “Binocular open-view Shack–Hartmann wavefront sensor with consecutive measurements of near triad and spherical aberration,” Appl. Opt. 47, 4619–4626 (2008). [CrossRef] [PubMed]
  39. E. J. Fernández, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34, 2628–2630 (2009). [CrossRef] [PubMed]
  40. R. Fielder and M. J. Moseley, “Does stereopsis matter in humans?” Eye 10, 233–238 (1996). [CrossRef] [PubMed]
  41. R. O’Connor, E. E. Birch, S. Anderson, H. Draper, and the FSOS Research Group, “The functional significance of stereopsis,” Invest. Ophthalmol. Visual Sci. 51, 2019–2023 (2010). [CrossRef]
  42. J. R. Jiménez, José J. Castro, Enrique Hita, and Rosario G. Anera, “Upper disparity limit after LASIK,” J. Opt. Soc. Am. A 25, 1227–1231 (2008). [CrossRef]
  43. J. J. Castro, J. R. Jiménez, E. Hita, and C. Ortiz, “Influence of interocular differences in the Strehl ratio on binocular summation,” Ophthalmic Physiol. Opt. 29, 370–374 (2009). [CrossRef] [PubMed]
  44. E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17, 11013–11025 (2009). [CrossRef] [PubMed]
  45. P. M. Prieto, F. Vargas-Martín, J. S. McLellan, and S. A. Burns, “The effect of polarization on ocular wave aberration measurements,” J. Opt. Soc. Am. A 19, 809–814 (2002). [CrossRef]
  46. L. I. N. Mazyn, M. Lenoir, G. Montagne, and G. J. P. Savelsbergh, “The contribution of stereo vision to one-handed catching,” Exp. Brain Res. 157, 383–390 (2004). [CrossRef] [PubMed]
  47. L. A. Mrotek, C. C. Gielen, and M. Flanders, “Manual tracking in three dimensions,” Exp. Brain Res. 171, 99–115 (2006). [CrossRef]
  48. G. Westheimer and S. P. McKee, “Stereogram design for testing local stereopsis,” Invest. Ophthalmol. Visual Sci. 19, 802–809 (1980).
  49. M. Bach, C. Schmitt, M. Kromeier, and G. Kommerell, “The Freiburg stereoacuity test: automatic measurement of stereo threshold,” Graefe's Arch. Clin. Exp. Ophthalmol. 239, 562–566 (2001). [CrossRef]
  50. J. V. Lovasik and M. Szymkiw, “Effects of aniseikonia, anisometropia, accommodation, retinal illuminance, and pupil size on stereopsis,” Invest. Ophthalmol. Visual Sci. 26, 741–750 (1985).
  51. P. P. Schmidt, “Sensitivity of random-dot stereoacuity and Snellen acuity to optical blur,” Optom. Vision Sci. 71, 466–471 (1994). [CrossRef]
  52. C. Schor and T. Heckmann, “Interocular differences in contrast and spatial frequency: effects on stereopsis and fusion,” Vision Res. 29, 837–847 (1989). [CrossRef] [PubMed]
  53. L. K. Cormack, S. B. Stevenson, and D. D. Landers, “Interactions of spatial frequency and unequal monocular contrasts in stereopsis,” Perception 26, 1121–1135 (1997). [CrossRef] [PubMed]
  54. D. L. Halpern and R. R. Blake, “How contrast affects stereoacuity,” Perception 17, 483—495 (1988). [CrossRef] [PubMed]
  55. G. Legge and Y. Gu, “Stereopsis and contrast,” Vision Res. 29, 989–1004 (1989). [CrossRef] [PubMed]
  56. I. C. Wood, “Stereopsis with spatially degraded images,” Invest. Ophthalmol. Visual Sci. 3, 337–340 (1983).
  57. T. Geib and C. Baumann, “Effect of luminance and contrast on stereoscopic acuity,” Graefe's Arch. Clin. Exp. Ophthalmol. 228, 310–315 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited