OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: A64–A75

Statistics of intensity in adaptive-optics images and their usefulness for detection and photometry of exoplanets

Szymon Gladysz, Natalia Yaitskova, and Julian C. Christou  »View Author Affiliations

JOSA A, Vol. 27, Issue 11, pp. A64-A75 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (580 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper is an introduction to the problem of modeling the probability density function of adaptive-optics speckle. We show that with the modified Rician distribution one cannot describe the statistics of light on axis. A dual solution is proposed: the modified Rician distribution for off-axis speckle and gamma-based distribution for the core of the point spread function. From these two distributions we derive optimal statistical discriminators between real sources and quasi-static speckles. In the second part of the paper the morphological difference between the two probability density functions is used to constrain a one-dimensional, “blind,” iterative deconvolution at the position of an exoplanet. Separation of the probability density functions of signal and speckle yields accurate differential photometry in our simulations of the SPHERE planet finder instrument.

© 2010 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(030.6140) Coherence and statistical optics : Speckle
(030.6600) Coherence and statistical optics : Statistical optics
(030.7060) Coherence and statistical optics : Turbulence
(100.2980) Image processing : Image enhancement
(350.1270) Other areas of optics : Astronomy and astrophysics

Original Manuscript: April 14, 2010
Manuscript Accepted: May 28, 2010
Published: August 5, 2010

Szymon Gladysz, Natalia Yaitskova, and Julian C. Christou, "Statistics of intensity in adaptive-optics images and their usefulness for detection and photometry of exoplanets," J. Opt. Soc. Am. A 27, A64-A75 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Hariharan, “Speckle patterns: a historical retrospect,” Opt. Acta 19, 791–793 (1972). [CrossRef]
  2. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1150 (1976). [CrossRef]
  3. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Topics in Applied Physics: Laser Speckle and Related Phenomena, J.C.Dainty, ed. (Springer-Verlag, 1975), Vol. 9, pp. 9–75.
  4. J. W. Goodman, Speckle Phenomena in Optics (Roberts, 2006).
  5. V. F. Canales and M. P. Cagigal, “Rician distribution to describe speckle the statistics in adaptive optics,” Appl. Opt. 38, 766–771 (1999). [CrossRef]
  6. C. Aime and R. Soummer, “The usefulness and limits of coronagraphy in the presence of pinned speckles,” Astrophys. J. 612, L85–L88 (2004). [CrossRef]
  7. R. Soummer, A. Ferrari, C. Aime, and L. Jolissaint, “Speckle noise and dynamic range in coronagraphic images,” Astrophys. J. 669, 642–656 (2007). [CrossRef]
  8. M. P. Cagigal and V. F. Canales, “Experimental checking of the Rician the statistics in partially compensated wavefronts,” Opt. Eng. 40, 2690–2697 (2001). [CrossRef]
  9. M. P. Fitzgerald and J. R. Graham, “Speckle the statistics in adaptively corrected images,” Astrophys. J. 637, 541–547 (2006). [CrossRef]
  10. J. C. Christou, S. Gladysz, M. Redfern, L. W. Bradford, and L. C. J. Roberts, “Characterization of the variability of the Strehl ratio of adaptive optics point spread functions,” in Proceedings of the AMOS Technical Conference (Maui Economic Development Board, 2006), pp. 528–537.
  11. R. Soummer and A. Ferrari, “The Strehl ratio in adaptive optics images: the statistics and estimation,” Astrophys. J. Lett. 663, L49–L52 (2007). [CrossRef]
  12. S. Gladysz, J. C. Christou, L. W. Bradford, and L. C. Roberts, Jr., “Temporal variability and the statistics of the Strehl ratio in adaptive-optics images,” Publ. Astron. Soc. Pac. 120, 1132–1143 (2008). [CrossRef]
  13. E. Aller-Carpentier, eallerca@eso.org (personal communication, 2010).
  14. R. Racine, G. A. H. Walker, D. Nadeau, R. Doyon, and C. Marois, “Speckle noise and the detection of faint companions,” Publ. Astron. Soc. Pac. 111, 587–594 (1999). [CrossRef]
  15. E. E. Bloemhof, R. D. Dekany, M. Troy, and B. R. Oppenheimer, “Behavior of remnant speckles in an adaptively corrected imaging system,” Astrophys. J. 558, L71–L74 (2001). [CrossRef]
  16. M. D. Perrin, A. Sivaramakrishnan, R. B. Makidon, B. R. Oppenheimer, and J. R. Graham, “The structure of high Strehl ratio point-spread functions,” Astrophys. J. 596, 702–712 (2003). [CrossRef]
  17. A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).
  18. M. C. Roggemann and B. M. Welsh, Imaging through Turbulence (CRC Press, 1996).
  19. S. Hinkley, B. R. Oppenheimer, R. Soummer, A. Sivaramakrishnan, L. C. Roberts, Jr., J. Kuhn, R. B. Makidon, M. D. Perrin, J. P. Lloyd, K. Kratter, and D. Brenner, “Temporal evolution of coronagraphic dynamic range and constraints on companions to Vega,” Astrophys. J. 654, 633–640 (2007). [CrossRef]
  20. M. Janson, W. Brandner, T. Henning, and H. Zinnecker, “Early ComeOn+ adaptive optics observation of GQ Lupi and its substellar companion,” Astron. Astrophys. 453, 609–614 (2006). [CrossRef]
  21. S. Gladysz and J. C. Christou, “Detection of faint companions through stochastic speckle discrimination,” Astrophys. J. 684, 1486–1495 (2008). [CrossRef]
  22. S. Gladysz and J. C. Christou, “Reference-less detection, astrometry, and photometry of faint companions with adaptive optics,” Astrophys. J. 698, 28–42 (2009). [CrossRef]
  23. T. Fusco and J.-M. Conan, “On- and off-axis statistical behavior of adaptive-optics-corrected short-exposure Strehl ratio,” J. Opt. Soc. Am. A 21, 1277–1289 (2004). [CrossRef]
  24. J. Uozumi and T. Asakura, “The first-order the statistics of partially developed non-Gaussian speckle patterns,” J. Opt. 12, 177–186 (1981). [CrossRef]
  25. N. Yaitskova, “Probability density function and detection threshold in high contrast imaging with partially polarized light,” Opt. Lett. 34, 1720–1722 (2009). [CrossRef] [PubMed]
  26. V. F. Canales and M. P. Cagigal, “Photon the statistics in partially compensated wave fronts,” J. Opt. Soc. Am. A 16, 2550–2554 (1999). [CrossRef]
  27. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  28. S. Gladysz, J. C. Christou, M. Kenworthy, N. M. Law, and R. Dekany, “Reference-less detection, astrometry, and photometry of faint companions with adaptive optics at 1, 2 and 5 microns,” in Proceedings of the AMOS Technical Conference (Maui Economic Development Board, 2008), pp. 42–51.
  29. N. Yaitskova, “Adaptive optics correction of segment aberration,” J. Opt. Soc. Am. A 26, 59–71 (2009). [CrossRef]
  30. S. Gladysz, J. Christou, and M. Redfern, “Characterization of the Lick adaptive optics point spread function,” Proc. SPIE 6272, 62720J1–12 (2006).
  31. L. Jolissaint, J.-P. Veran, and R. Conan, “Analytical modeling of adaptive optics: foundations of the phase spatial power spectrum approach,” J. Opt. Soc. Am. A 23, 382–394 (2006). [CrossRef]
  32. J.-L. Beuzit, M. Feldt, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, L. Abe, J. Antichi, A. Baruffolo, P. Baudoz, A. Boccaletti, M. Carbillet, J. Charton, R. Claudi, M. Downing, C. Fabron, P. Feautrier, E. Fedrigo, T. Fusco, J.-L. Gach, R. Gratton, T. Henning, N. Hubin, F. Joos, M. Kasper, M. Langlois, R. Lenzen, C. Moutou, A. Pavlov, C. Petit, J. Pragt, P. Rabou, F. Rigal, R. Roelfsema, G. Rousset, M. Saisse, H.-M. Schmid, E. Stadler, C. Thalmann, M. Turatto, S. Udry, F. Vakili, and R. Waters, “SPHERE: a planet finder instrument for the VLT,” Proc. SPIE 7014, 7014181-12 (2008).
  33. C. Cavarroc, A. Boccaletti, P. Baudoz, T. Fusco, and D. Rouan, “Fundamental limitations on Earth-like planet detection with extremely large telescopes,” Astron. Astrophys. 447, 397–403 (2006). [CrossRef]
  34. A. Boccaletti, M. Carbillet, T. Fusco, D. Mouillet, M. Langlois, C. Moutou, and K. Dohlen, “End-to-end simulation of AO-assisted coronagraphic differential imaging: estimation of performance for SPHERE,” Proc. SPIE 7015, 70156E1–11 (2008).
  35. N. Yaitskova, K. Dohlen, and P. Dierickx, “Analytical study of diffraction effects in extremely large segmented telescopes,” J. Opt. Soc. Am. A 20, 1563–1575 (2003). [CrossRef]
  36. A. Burrows, D. Sudarsky, and I. Hubeny, “Spectra and diagnostics for the direct detection of wide-separation extrasolar giant planets,” Astrophys. J. 609, 407–416 (2004). [CrossRef]
  37. A. Boccaletti, G. Chauvin, P. Baudoz, and J.-L. Beuzit, “Coronagraphic near-IR photometry of AB Doradus C,” Astron. Astrophys. 482, 939–943 (2008). [CrossRef]
  38. A. Sivaramakrishnan and B. R. Oppenheimer, “Astrometry and photometry with coronagraphs,” Astrophys. J. 647, 620–629 (2006). [CrossRef]
  39. C. Marois, D. Lafreniere, B. Macintosh, and R. Doyon, “Accurate astrometry and photometry of saturated and coronagraphic point spread functions,” Astrophys. J. 647, 612–619 (2006). [CrossRef]
  40. D. Burke, S. Gladysz, L. Roberts, N. Devaney, and C. Dainty, “An improved technique for the photometry and astrometry of faint companions,” Publ. Astron. Soc. Pac. 121, 767–777 (2009). [CrossRef]
  41. L. M. Mugnier, A. Cornia, J.-F. Sauvage, G. Rousset, T. Fusco, and N. Vedrenne, “Optimal method for exoplanet detection by angular differential imaging,” J. Opt. Soc. Am. A 26, 1326–1334 (2009). [CrossRef]
  42. J. C. Christou and J. D. Drummond, “Parameterization of the adaptive optics point spread function,” in Adaptive Optics: Methods, Analysis and Applications, OSA Technical Digest (CD) (Optical Society of America, 2009), paper AOWA4.
  43. C. Marois, D. Lafreniere, R. Doyon, B. Macintosh, and D. Nadeau, “Angular differential imaging: a powerful high-contrast imaging technique,” Astrophys. J. 641, 556–564 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited