OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: A97–A105

High-resolution lidar observations of mesospheric sodium and implications for adaptive optics

Thomas Pfrommer and Paul Hickson  »View Author Affiliations


JOSA A, Vol. 27, Issue 11, pp. A97-A105 (2010)
http://dx.doi.org/10.1364/JOSAA.27.000A97


View Full Text Article

Enhanced HTML    Acrobat PDF (472 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Observations of sodium density variability in the upper mesosphere/lower thermosphere, obtained using a high-resolution lidar system, show rapid fluctuations in the sodium centroid altitude. The temporal power spectrum extends above 1 Hz and is well-fit by a power law having a slope that is 1.95 ± 0.12 . These fluctuations produce focus errors in adaptive optics systems employing continuous-wave sodium laser guide stars, which can be significant for large-aperture telescopes. For a 30 m aperture diameter, the associated rms wavefront error is approximately 4 nm per meter of altitude change and increases as the square of the aperture diameter. The vertical velocity of the sodium centroid altitude is found to be 23 ms 1 on a 1 s time scale. If these high-frequency fluctuations arise primarily from advection of horizontal structure by the mesospheric wind, our data imply that variations in the sodium centroid altitude on the order of tens of meters occur over the horizontal scales spanned by proposed laser guide star asterisms. This leads to substantial differential focus errors ( 107   nm over a 1 arc min separation with a 30 m aperture diameter) that may impact the performance of wide-field adaptive optics systems. Short-lasting and narrow sodium density enhancements, more than 1 order of magnitude above the local sodium density, occur due to advection of meteor trails. These have the ability to change the sodium centroid altitude by as much as 1 km in less than 1 s, which could result in temporary disruption of adaptive optics systems.

© 2010 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.1285) Atmospheric and oceanic optics : Atmospheric correction

History
Original Manuscript: April 2, 2010
Revised Manuscript: July 27, 2010
Manuscript Accepted: August 13, 2010
Published: September 13, 2010

Citation
Thomas Pfrommer and Paul Hickson, "High-resolution lidar observations of mesospheric sodium and implications for adaptive optics," J. Opt. Soc. Am. A 27, A97-A105 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-11-A97

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited