OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: A97–A105

High-resolution lidar observations of mesospheric sodium and implications for adaptive optics

Thomas Pfrommer and Paul Hickson  »View Author Affiliations


JOSA A, Vol. 27, Issue 11, pp. A97-A105 (2010)
http://dx.doi.org/10.1364/JOSAA.27.000A97


View Full Text Article

Enhanced HTML    Acrobat PDF (472 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Observations of sodium density variability in the upper mesosphere/lower thermosphere, obtained using a high-resolution lidar system, show rapid fluctuations in the sodium centroid altitude. The temporal power spectrum extends above 1 Hz and is well-fit by a power law having a slope that is 1.95 ± 0.12 . These fluctuations produce focus errors in adaptive optics systems employing continuous-wave sodium laser guide stars, which can be significant for large-aperture telescopes. For a 30 m aperture diameter, the associated rms wavefront error is approximately 4 nm per meter of altitude change and increases as the square of the aperture diameter. The vertical velocity of the sodium centroid altitude is found to be 23 ms 1 on a 1 s time scale. If these high-frequency fluctuations arise primarily from advection of horizontal structure by the mesospheric wind, our data imply that variations in the sodium centroid altitude on the order of tens of meters occur over the horizontal scales spanned by proposed laser guide star asterisms. This leads to substantial differential focus errors ( 107   nm over a 1 arc min separation with a 30 m aperture diameter) that may impact the performance of wide-field adaptive optics systems. Short-lasting and narrow sodium density enhancements, more than 1 order of magnitude above the local sodium density, occur due to advection of meteor trails. These have the ability to change the sodium centroid altitude by as much as 1 km in less than 1 s, which could result in temporary disruption of adaptive optics systems.

© 2010 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.1285) Atmospheric and oceanic optics : Atmospheric correction

History
Original Manuscript: April 2, 2010
Revised Manuscript: July 27, 2010
Manuscript Accepted: August 13, 2010
Published: September 13, 2010

Citation
Thomas Pfrommer and Paul Hickson, "High-resolution lidar observations of mesospheric sodium and implications for adaptive optics," J. Opt. Soc. Am. A 27, A97-A105 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-11-A97


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. C. Plane, “Atmospheric chemistry of meteoric metals,” Chem. Rev. (Washington, D.C.) 103, 4963–4984 (2003). [CrossRef]
  2. J. M. Beckers, “Adaptive optics for astronomy—Principles, performance, and applications,” Annu. Rev. Astron. Astrophys. 31, 13–62 (1993). [CrossRef]
  3. G. Herriot, P. Hickson, B. Ellerbroek, J. Véran, C. She, R. Clare, and D. Looze, “Focus errors from tracking sodium layer altitude variations with laser guide star adaptive optics for the Thirty Meter Telescope,” Proc. SPIE 6272, 62721l (2006). [CrossRef]
  4. D. S. Davis, P. Hickson, G. Herriot, and C.-Y. She, “Temporal variability of the telluric sodium layer,” Opt. Lett. 31, 3369–3371 (2006). [CrossRef] [PubMed]
  5. R. Holzlohner, S. M. Rochester, D. Bonaccini Calia, D. Budker, J. M. Higbie, and W. Hackenberg, “Optimization of cw sodium laser guide star efficiency,” Astron. Astrophys. 510, A20 (2010). [CrossRef]
  6. T. Pfrommer, P. Hickson, and C.-Y. She, “A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies,” Geophys. Res. Lett. 36, L15831 (1–11) (2009). [CrossRef]
  7. T. Pfrommer, P. Hickson, C. She, and J. D. Vance, “High-resolution lidar experiment for the Thirty Meter Telescope,” Proc. SPIE 7015, 70154Y (2008). [CrossRef]
  8. P. Hickson, T. Pfrommer, R. Cabanac, A. Crotts, B. Johnson, V. de Lapparent, K. M. Lanzetta, S. Gromoll, M. K. Mulrooney, S. Sivanandam, and B. Truax, “The Large Zenith Telescope: A 6 m liquid-mirror telescope,” Publ. Astron. Soc. Pac. 119, 444–455 (2007). [CrossRef]
  9. C. Tilgner and U. von Zahn, “Average properties of the sodium density distribution as observed at 69degN latitude in winter,” J. Geophys. Res. 93, 8439–8454 (1988). [CrossRef]
  10. K. H. Fricke and U. von Zahn, “Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985). [CrossRef]
  11. C. S. Gardner, D. G. Voelz, C. F. Sechrist, Jr., and A. C. Segal, “Lidar studies of the nighttime sodium layer over Urbana, Illinois. I—Seasonal and nocturnal variations,” J. Geophys. Res. 91, 13659–13673 (1986). [CrossRef]
  12. T. Yuan, C. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, and H. Schmidt, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41 °n, 105 °w), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (1–11) (2008). [CrossRef]
  13. C. S. Gardner and J. D. Shelton, “Density response of neutral atmospheric layers to gravity wave perturbations,”J. Geophys. Res. 90, 1745–1754 (1985). [CrossRef]
  14. D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41, 1003 (1–64) (2003). [CrossRef]
  15. Z. Ceplecha, J. Borovička, W. G. Elford, D. O. Revelle, R. L. Hawkes, V. Porubčan, and M. Šimek, “Meteor phenomena and bodies,” Space Sci. Rev. 84, 327–471 (1998). [CrossRef]
  16. P. Brown, D. K. Wong, R. J. Weryk, and P. Wiegert, “A meteoroid stream survey using the Canadian Meteor Orbit Radar: II: Identification of minor showers using a 3D wavelet transform,” Icarus 207, 66–81 (2010). [CrossRef]
  17. T. J. Kane and C. S. Gardner, “Lidar observations of the meteoric deposition of mesospheric metals,” Science 259, 1297–1300 (1993). [CrossRef] [PubMed]
  18. B. R. Clemesha, “Sporadic neutral metal layers in the mesosphere and lower thermosphere,” J. Atmos. Terr. Phys. 57, 725–736 (1995). [CrossRef]
  19. S. Vaughan, “A Bayesian test for periodic signals in red noise,” Mon. Not. R. Astron. Soc. 402, 307–320 (2010). [CrossRef]
  20. H. Chandra, H. S. S. Sinha, U. Das, R. N. Misra, S. R. Das, J. Datta, S. C. Chakravarty, A. K. Patra, N. Venkateswara Rao, and D. Narayana Rao, “First mesospheric turbulence study using coordinated rocket and MST radar measurements over Indian low latitude region,” Ann. Geophys. 26, 2725–2738 (2008). [CrossRef]
  21. M. P. Hickey and J. M. C. Plane, “A chemical-dynamical model of wave-driven sodium fluctuations,” Geophys. Res. Lett. 22, 2861–2864 (1995). [CrossRef]
  22. D. C. Senft, C. A. Hostetler, and C. S. Gardner, “Characteristics of gravity wave activity and spectra in the upper stratosphere and upper mesosphere at Areceibo during early April 1989,” J. Atmos. Terr. Phys. 55, 425–439 (1993). [CrossRef]
  23. C. S. Gardner, “Theoretical models for gravity wave horizontal wave number spectra: Effects of wave field anisotropies,” J. Geophys. Res. 103, 6417–6425 (1998). [CrossRef]
  24. D. C. Fritts, R. C. Blanchard, and L. Coy, “Gravity wave structure between 60 and 90 km inferred from Space Shuttle reentry data,” J. Atmos. Sci. 46, 423–434 (1989). [CrossRef]
  25. R. E. Bills and C. S. Gardner, “Lidar observations of the mesopause region temperature structure at Urbana,” J. Geophys. Res. 98, 1011–1021 (1993). [CrossRef]
  26. D. C. Fritts and T. E. VanZandt, “The effects of Doppler shifting on the frequency spectra of atmospheric gravity waves,” J. Geophys. Res. 92, 9723–9732 (1987). [CrossRef]
  27. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” Prog. Opt. 19, 281–376 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited