OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 12 — Dec. 1, 2010
  • pp: 2574–2582

Airy beams: a geometric optics perspective

Sophie Vo, Kyle Fuerschbach, Kevin P. Thompson, Miguel A. Alonso, and Jannick P. Rolland  »View Author Affiliations

JOSA A, Vol. 27, Issue 12, pp. 2574-2582 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (837 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Theoretically formulated in the 1970s within the context of nonrelativistic quantum mechanics, Airy beams have been experimentally realized for the first time only recently, paving the way to innovative optical techniques. While their remarkable features, a non-diffracting property and a transverse shift of the intensity maximum during propagation, are currently theoretically described from the wave optics viewpoint, here their exact relation to rays and geometric wavefront aberrations is revealed using a wavefront family that includes two-dimensional Airy beams. Several members of this family are computationally and experimentally implemented here. The lateral shift of Airy beams during propagation is presented in the context of the three-dimensional caustic representation. This new description allows re-emphasizing the use of “Airy-like” beams in computational imaging for depth of focus extension.

© 2010 Optical Society of America

OCIS Codes
(080.1510) Geometric optics : Propagation methods
(080.2720) Geometric optics : Mathematical methods (general)
(220.1010) Optical design and fabrication : Aberrations (global)
(070.3185) Fourier optics and signal processing : Invariant optical fields

ToC Category:
Geometric Optics

Original Manuscript: September 7, 2010
Manuscript Accepted: October 7, 2010
Published: November 11, 2010

Sophie Vo, Kyle Fuerschbach, Kevin P. Thompson, Miguel A. Alonso, and Jannick P. Rolland, "Airy beams: a geometric optics perspective," J. Opt. Soc. Am. A 27, 2574-2582 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. V. Berry and N. L. Balazs, “Non spreading wave packets,” Am. J. Phys. 47, 264–267 (1979). [CrossRef]
  2. M. A. Bandres, “Accelerating parabolic beams,” Opt. Lett. 33, 1678–1680 (2008). [CrossRef] [PubMed]
  3. M. A. Bandres, “Accelerating beams,” Opt. Lett. 34, 3791–3793 (2010). [CrossRef]
  4. G. Siviloglou and D. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007). [CrossRef] [PubMed]
  5. G. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901-1–213901-4 (2007). [CrossRef]
  6. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2, 675–678 (2008). [CrossRef]
  7. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009). [CrossRef] [PubMed]
  8. J. A. Davis, M. J. Mitry, M. A. Bandres, I. Ruiz, K. P. McAuley, and D. M. Cottrell, “Generation of accelerating Airy and accelerating parabolic beams using phase-only patterns,” Appl. Opt. 48, 3170–3176 (2009). [CrossRef] [PubMed]
  9. J. E. Morris, M. Mazilu, J. Baumgartl, T. Cizmar, and K. Dholakia, “Supercontinuum Airy beams,” Proc. SPIE 7430, 74300W-1–74300W-9 (2009). [CrossRef]
  10. H. T. Dai, X. W. Sun, D. Luo, and Y. J. Liu, “Airy beams generated by a binary phase element made of polymer-dispersed liquid crystals,” Opt. Express 17, 19365–19370 (2009). [CrossRef] [PubMed]
  11. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Non linear generation and manipulation of Airy beams,” Nat. Photonics 3, 395–398 (2009). [CrossRef]
  12. H. H. Hopkins, Wave Theory of Aberrations (Oxford, 1950).
  13. K. P. Thompson, “Multinodal fifth-order optical aberrations of optical systems without rotational symmetry: the comatic aberrations,” J. Opt. Soc. Am. A 27, 1490–1504 (2010). [CrossRef]
  14. W. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett. 26, 875–877 (2001). [CrossRef]
  15. S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgesen, and J. van der Gracht, “Pupil-phase optimization for extended-focus, aberration—corrected imaging systems,” Proc. SPIE 5559, 335–345 (2004). [CrossRef]
  16. A. Castro and J. Ojeda-Castañeda, “Asymmetric phase masks for extended depth of field,” Appl. Opt. 43, 3474–3479 (2004). [CrossRef] [PubMed]
  17. Y. Takahashi and S. Komatsu, “Optimized free-form phase mask for extension of depth of field in wavefront-coded imaging,” Opt. Lett. 33, 1515–1517 (2008). [CrossRef] [PubMed]
  18. K. Chu, N. George, and W. Chi, “Extending the depth of field through unbalanced optical path difference,” Appl. Opt. 47, 6895–6903 (2008). [CrossRef] [PubMed]
  19. N. Caron and Y. Sheng, “Polynomial phase masks for extending the depth of field of a microscope,” Appl. Opt. 47, E39–E43 (2008). [CrossRef] [PubMed]
  20. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866 (1995). [CrossRef] [PubMed]
  21. S. Tucker, W. T. Cathey, and E. R. Dowski, “Extended depth of field and aberration control for inexpensive digital microscope systems,” Opt. Express 4, 467–474 (1999). [CrossRef] [PubMed]
  22. W. T. Cathey and E. R. Dowski, “New paradigm for imaging system,” Appl. Opt. 41, 6080–6092 (2002). [CrossRef] [PubMed]
  23. J. Van der Gracht, V. P. Pauca, H. Setty, R. Narayanswamy, B. J. Plemmons, S. Prasad, and T. Torgesen, “Iris recognition with enhanced depth-of-field image acquisition,” Proc. SPIE 5438, 120–129 (2004). [CrossRef]
  24. F. Yan, L.-G. Zheng, and X.-J. Zhang, “Design of an off-axis three-mirror anastigmatic optical system with wavefront coding technology,” Opt. Eng. 47, 063001-1–063001-10 (2008). [CrossRef]
  25. T. Vettenburg, A. Wood, N. Bustin, and A. R. Harvey, “Optimality of pupil-phase profiles for increasing the defocus tolerance of hybrid digital-optical imaging systems,” Proc. SPIE 7429, 742903-1–742903-8 (2009). [CrossRef]
  26. K. Kubala, E. R. Dowski, and W. T. Cathey, “Reducing complexity in computational imaging systems,” Opt. Express 11, 2102–2108 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: MOV (527 KB)     
» Media 2: MOV (440 KB)     
» Media 3: MOV (376 KB)     
» Media 4: MOV (353 KB)     
» Media 5: MOV (328 KB)     
» Media 6: MOV (337 KB)     
» Media 7: MOV (342 KB)     
» Media 8: MOV (379 KB)     
» Media 9: MOV (414 KB)     
» Media 10: MOV (508 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited