OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 12 — Dec. 1, 2010
  • pp: 2588–2592

Quantitatively characterizing fluctuations of dielectric susceptibility of tissue with Fourier domain optical coherence tomography

Wanrong Gao  »View Author Affiliations


JOSA A, Vol. 27, Issue 12, pp. 2588-2592 (2010)
http://dx.doi.org/10.1364/JOSAA.27.002588


View Full Text Article

Enhanced HTML    Acrobat PDF (119 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new model of Fourier domain optical coherence tomography (FDOCT) is proposed, valid within the first Born approximation, which takes the fluctuations of the dielectric susceptibility of tissue into account. It is shown that the spectral electrical power at the detector in the FDOCT system is proportional to the Fourier component of the spatial correlation function of the dielectric susceptibility of the tissue, proportional to the squares of the spectrum of the incident light field and the amplitude reflectance of the reference mirror. One possible application of the obtained result is to use the measured spectral data of the spatial correlation function of the dielectric susceptibility to quantitatively characterize properties of tissue.

© 2010 Optical Society of America

OCIS Codes
(110.1650) Imaging systems : Coherence imaging
(170.0110) Medical optics and biotechnology : Imaging systems
(170.1650) Medical optics and biotechnology : Coherence imaging
(180.5810) Microscopy : Scanning microscopy
(180.1655) Microscopy : Coherence tomography

ToC Category:
Imaging Systems

History
Original Manuscript: September 28, 2010
Manuscript Accepted: October 17, 2010
Published: November 15, 2010

Citation
Wanrong Gao, "Quantitatively characterizing fluctuations of dielectric susceptibility of tissue with Fourier domain optical coherence tomography," J. Opt. Soc. Am. A 27, 2588-2592 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-12-2588


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000). [CrossRef] [PubMed]
  3. J. G. Fujimoto, “Optical coherence tomography for ultrahigh-resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003). [CrossRef] [PubMed]
  4. A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, “Technology insight: optical coherence tomography—current status and future development,” Nat. Clin. Pract. Cardiovasc. Med. 3, 154–162 (2006). [CrossRef] [PubMed]
  5. M. E. Brezinski, “Applications of optical coherence tomography to cardiac and musculoskeletal diseases: bench to bedside?” J. Biomed. Opt. 12, 051705–1-12 (2007). [CrossRef] [PubMed]
  6. A. M. Zysk, F. T. Nguryen, A. L. Oldenberg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12, 051403–1-21 (2007). [CrossRef] [PubMed]
  7. A. Tanaka, G. J. Tearney, and B. E. Bouma, “Challenges on the frontier of intracoronary imaging: atherosclerotic plaque macrophage measurement by optical coherence tomography,” J. Biomed. Opt. 15, 011104–1-8 (2010). [CrossRef] [PubMed]
  8. A. F. Fercher and C. K. Hitzenberger, “Optical coherence tomography,” in Progress in Optics, Vol. 44, E. Wolf, ed. (Elsevier, 2002), Chap. 4, pp. 215–302. [CrossRef]
  9. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  10. J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993). [CrossRef] [PubMed]
  11. J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994). [CrossRef] [PubMed]
  12. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994). [CrossRef] [PubMed]
  13. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle,” J. Opt. Soc. Am. A 17, 484–490 (2000). [CrossRef]
  14. P. E. Anderson, T. M. Jrgensen, L. Thrane, A. Tycho, and H. T. Yura, “Modeling light-tissue interaction in optical coherence tomography systems,” in Optical Coherence Tomography—Technology and Applications, W.Drexler and J.G.Fujimoto, eds. (Springer, 2008), Chap. 3, pp. 73–115. [CrossRef]
  15. R. F. Lutomirski and H. T. Yura, “Propagation of a finite optical beam in an inhomogeneous medium,” Appl. Opt. 10, 1652–1658 (1971). [CrossRef] [PubMed]
  16. D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12, 4353–4365 (2004). [CrossRef] [PubMed]
  17. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969). [CrossRef]
  18. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995). [CrossRef]
  19. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996). [CrossRef]
  20. A. F. Fercher, “Inverse scattering, dispersion, and speckle in optical coherence,” in Optical Coherence Tomography—Technology and Applications, W.Drexler and J.G.Fujimoto, eds. (Springer, 2008), Chap. 4, pp. 119–146. [CrossRef]
  21. G. Häusler, and M. W. Lindner, “’Coherence radar’ and ‘spectral radar’ —new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998). [CrossRef]
  22. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002). [CrossRef] [PubMed]
  23. B. E. Bouma, S.-H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20, 111–118 (2009). [CrossRef] [PubMed]
  24. J. A. Izatt and M. A. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography—Technology and Applications, W.Drexler and J.G.Fujimoto, eds. (Springer, 2008), Chap. 2, pp. 47–72. [CrossRef]
  25. J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21, 1310–1312 (1996). [CrossRef] [PubMed]
  26. W. Gao, “Spectral changes of the light produced by scattering from tissue,” Opt. Lett. 35, 862–864 (2010). [CrossRef] [PubMed]
  27. W. Gao, “Square law between Fourier spatial frequency of correlation function of scattering potential of tissue and spectrum of scattered light in the far zone,” J. Biomed. Opt. 15, 030502 (2010). [CrossRef] [PubMed]
  28. J. M. Schmitt and G. Kumar, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1251 (1997). [CrossRef]
  29. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University Press, 1999.
  30. E. Wolf, J. T. Foley, and G. Gory, “Frequency shifts of spectral lines produced by scattering from spatially random media,” J. Opt. Soc. Am. A 6, 1142–1149 (1989). [CrossRef]
  31. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003). [CrossRef] [PubMed]
  32. J. D. Rogers, I. R. Capoglu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett. 34, 1891–1893 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited