OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 2 — Feb. 1, 2010
  • pp: 174–179

Bioluminescence tomography based on the phase approximation model

W. Cong and G. Wang  »View Author Affiliations

JOSA A, Vol. 27, Issue 2, pp. 174-179 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (479 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A reconstruction method of bioluminescence sources is proposed based on a phase approximation model. Compared with the diffuse approximation, this phase approximation model more correctly predicts bioluminescence photon propagation in biological tissues, so that bioluminescence tomography can accurately locate and quantify the distribution of bioluminescence sources. The compressive sensing (CS) technique is applied to regularize the inverse source reconstruction to enhance numerical stability and efficiency. The numerical simulation and phantom experiments demonstrate the feasibility of the proposed approach.

© 2010 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 15, 2009
Revised Manuscript: November 23, 2009
Manuscript Accepted: December 2, 2009
Published: January 19, 2010

Virtual Issues
Vol. 5, Iss. 4 Virtual Journal for Biomedical Optics

W. Cong and G. Wang, "Bioluminescence tomography based on the phase approximation model," J. Opt. Soc. Am. A 27, 174-179 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Contag and M. H. Bachmann, “Advances in bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4, 235-260 (2002). [CrossRef] [PubMed]
  2. P. Ray, A. M. Wu, and S. S. Gambhir, “Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice,” Cancer Res. 63, 1160-1165 (2003). [PubMed]
  3. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313-320 (2005). [CrossRef] [PubMed]
  4. W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6, 432-440 (2001). [CrossRef] [PubMed]
  5. A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 1 (Academic, 1978).
  6. A. J. Welch and M. J. C. Van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, 1995).
  7. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  8. Gassan S. Abdoulaev and Andreas H. Hielscher, “Three-dimensional optical tomography with the equation of radiative transfer,” J. Electron. Imaging 12, 594-601 (2003). [CrossRef]
  9. A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323-345 (2005). [CrossRef]
  10. G. Wang, E. A. Hoffman, and G. McLennan, “Systems and methods for bioluminescent computed tomographic reconstruction.” Patent disclosure filed in July 2002; U.S. provisional patent application filed in March 2003; U.S. patent application filed in March 2004.
  11. G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229, 566 (2003).
  12. G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31, 2289-2299 (2004). [CrossRef] [PubMed]
  13. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756-6771 (2005). [CrossRef] [PubMed]
  14. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225-4241 (2005). [CrossRef] [PubMed]
  15. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31, 365-367 (2006). [CrossRef] [PubMed]
  16. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005). [CrossRef] [PubMed]
  17. C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 24007 (2007). [CrossRef]
  18. S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues-I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162-1168 (1989). [CrossRef] [PubMed]
  19. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995). [CrossRef] [PubMed]
  20. W. Cong, H. Shen, A. Cong, and G. Wang, “Integral equation of the photon fluence rate and flux based on a generalized Delta-Eddington phase function,” J. Biomed. Opt. 13, 024016 (2008). [CrossRef] [PubMed]
  21. W. Cong, H. Shen, A. Cong, Y. Wang, and G. Wang, “Modeling photon propagation in biological tissues using a generalized Delta-Eddington phase function,” Phys. Rev. E 76, 051913 (2007). [CrossRef]
  22. E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51, 4203-4215 (2005). [CrossRef]
  23. E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information.” IEEE Trans. Inf. Theory 52, 489-509 (2006). [CrossRef]
  24. E. J. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements.” Commun. Pure Appl. Math. 59, 1207-1223 (2006). [CrossRef]
  25. Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally-resolved bioluminescence omography with sparse a priori information,” Opt. Express 17, 8062-8080 (2009). [CrossRef] [PubMed]
  26. J. H. Joseph, W. J. Wiscombe, and J. A. Weinman, “The Delta-Eddington approximation for radiative flux transfer,” J. Atmos. Sci. 33, 2452-2459 (1976). [CrossRef]
  27. S. R. Arridge, “Optical tomography in medical, imaging,” Inverse Probl. 15, R41-R93 (1999). [CrossRef]
  28. B. Harrach, “On uniqueness in diffuse optical tomography,” Inverse Probl. 25, 055010 (2009). [CrossRef]
  29. K. E. Atkinson, Numerical Solution of Integral Equations of the Second Kind (Cambridge Univ. Press, 1997). [CrossRef]
  30. D. L. Donoho and J. Tanner, “Sparse nonnegative solution of underdetermined linear equations by linear programming,” Proc. Natl. Acad. Sci. U.S.A. 102, 9446-9451 (2005). [CrossRef] [PubMed]
  31. C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54, R59-R97 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited