OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 2 — Feb. 1, 2010
  • pp: 188–199

A complete characterization of pre-Mueller and Mueller matrices in polarization optics

B. N. Simon, S. Simon, N. Mukunda, F. Gori, M. Santarsiero, R. Borghi, and R. Simon  »View Author Affiliations


JOSA A, Vol. 27, Issue 2, pp. 188-199 (2010)
http://dx.doi.org/10.1364/JOSAA.27.000188


View Full Text Article

Enhanced HTML    Acrobat PDF (203 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Mueller–Stokes formalism that governs conventional polarization optics is formulated for plane waves, and thus the only qualification one could require of a 4 × 4 real matrix M in order that it qualify to be the Mueller matrix of some physical system would be that M map Ω ( pol ) , the positive solid light cone of Stokes vectors, into itself. In view of growing current interest in the characterization of partially coherent partially polarized electromagnetic beams, there is a need to extend this formalism to such beams wherein the polarization and spatial dependence are generically inseparably intertwined. This inseparability brings in additional constraints that a pre-Mueller matrix M mapping Ω ( pol ) into itself needs to meet in order to be an acceptable physical Mueller matrix. These additional constraints are motivated and fully characterized.

© 2010 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.5440) Optical devices : Polarization-selective devices
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Physical Optics

History
Original Manuscript: August 24, 2009
Revised Manuscript: November 27, 2009
Manuscript Accepted: November 27, 2009
Published: January 19, 2010

Citation
B. N. Simon, S. Simon, N. Mukunda, F. Gori, M. Santarsiero, R. Borghi, and R. Simon, "A complete characterization of pre-Mueller and Mueller matrices in polarization optics," J. Opt. Soc. Am. A 27, 188-199 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-2-188


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995), Chap. 6.
  2. C. Brosseau, Fundamentals of Polarized Light: A Statistical Approach (Wiley, 1998).
  3. J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J.: Appl. Phys. 40, 1-47 (2007). [CrossRef]
  4. D. F. V. James, “Change of polarization of light-beams on propagation through free space,” J. Opt. Soc. Am. A 11, 1641-1643 (1994). [CrossRef]
  5. F. Gori, “Matrix treatment of partially polarized, partially coherent beams,” Opt. Lett. 23, 241-243 (1998). [CrossRef]
  6. F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, “Beam coherence-polarization matrix,” J. Opt. A, Pure Appl. Opt. 7, 941-951 (1998).
  7. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312, 263-267 (2003). [CrossRef]
  8. F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, “Partially polarized Gaussian Schell-model beams,” J. Opt. A, Pure Appl. Opt. 3, 1-9 (2001). [CrossRef]
  9. F. Gori, M. Santarsiero, R. Simon, G. Piquero, R. Borghi, and G. Guattari, “Coherent-mode decomposition of partially coherent partially polarized beams,” J. Opt. Soc. Am. A 20, 78-84 (2003). [CrossRef]
  10. J. Tervo, T. Setälä, and A. T. Friberg, “Degree of coherence of electromagnetic fields,” Opt. Express 11, 1137-1142 (2003). [CrossRef] [PubMed]
  11. T. Setälä, J. Tervo, and A. T. Friberg, “Complete electromagnetic coherence in the space frequency domain,” Opt. Lett. 29, 328-330 (2004). [CrossRef] [PubMed]
  12. M. R. Dennis, “A three-dimensional degree of polarization based on Rayleigh scattering,” J. Opt. Soc. Am. A 24, 2065-2069 (2007). [CrossRef]
  13. P. Refrégiér and F. Goudail, “Invariant degrees of coherence of partially polarized light,” Opt. Express 13, 1051-1060 (2005). [CrossRef]
  14. O. Korotkova and E. Wolf, “Generalized Stokes parameters of random electromagnetic beams,” Opt. Lett. 30, 198-200 (2005). [CrossRef] [PubMed]
  15. T. Setälä, J. Tervo, and A. T. Friberg, “Stokes parameters and polarization contrasts in Young's interference experiment,” Opt. Lett. 31, 2208-2210 (2006). [CrossRef] [PubMed]
  16. A. Aiello and J. P. Woerdman, “Role of spatial coherence in polarization tomography,” Opt. Lett. 30, 1599-1601 (2005). [CrossRef] [PubMed]
  17. F. Gori, M. Santarsiero, and R. Borghi, “Maximizing Young's fringe visibility through reversible optical transformations,” Opt. Lett. 32, 588-590 (2007). [CrossRef] [PubMed]
  18. A. Luis, “Degree of coherence for vectorial electromagnetic fields as a distance between correlation matrices,” J. Opt. Soc. Am. A 24, 1063-1068 (2007). [CrossRef]
  19. R. Martínez-Herrero and P. M. Mejías, “Maximum visibility under unitary transformations in two-pinhole interference for electromagnetic fields,” Opt. Lett. 32, 1471-1473 (2007). [CrossRef] [PubMed]
  20. R. Martínez-Herrero and P. M. Mejías, “Relation between degrees of coherence for electromagnetic fields,” Opt. Lett. 32, 1504-1506 (2007). [CrossRef] [PubMed]
  21. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777-780 (1935). [CrossRef]
  22. N. Bohr, “Can quantum-mechanical description of physical reality be considered complete?” (Ed. note: commentary on ) Phys. Rev. 48, 696-702 (1935). [CrossRef]
  23. R. Barakat, “Bilinear constraints between elements of the 4×4 Mueller-Jones transfer matrix of polarization theory,” Opt. Commun. 38, 159-161 (1981). [CrossRef]
  24. R. Sridhar and R. Simon, “Normal form for Mueller matrices in polarization optics,” J. Mod. Opt. 41, 1903-1915 (1994). [CrossRef]
  25. G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Trans. Cambridge Philos. Soc. 9, 399-416 (1852).
  26. K. D. Abhyankar and A. L. Fymat, “Relationships between the elements of the phase matrix for scattering,” J. Math. Phys. 10, 1935-1938 (1969). [CrossRef]
  27. E. S. Fry and E. W. Kattawar, “Relationships between elements of the Stokes matrix,” Appl. Opt. 20, 2811-2814 (1981). [CrossRef] [PubMed]
  28. R. Simon, “The connection between Mueller and Jones matrices of polarization optics,” Opt. Commun. 42, 293-297 (1982). [CrossRef]
  29. K. Kim, L. Mandel, and E. Wolf, “Relationship between Jones and Mueller matrices for random media,” J. Opt. Soc. Am. A 4, 433-437 (1987). [CrossRef]
  30. J. J. Gil and E. Bernabeu, “A depolarization criterion in Mueller matrices,” Opt. Acta 32, 259-261 (1985). [CrossRef]
  31. J. J. Gil and E. Bernabeu, “Obtainment of the polarizing and retardation parameters of a nondepolarizing optical system from the decomposition of its Mueller matrix,” Optik (Stuttgart) 76, 67-71 (1987).
  32. S. R. Cloude, “Group-theory and polarization algebra,” Optik (Stuttgart) 75, 26-36 (1986).
  33. V. M. van der Mee, “An eigenvalue criterion for matrices transforming Stokes parameters,” J. Math. Phys. 34, 5072-5088 (1993). [CrossRef]
  34. D. G. M. Anderson and R. Barakat, “Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix,” J. Opt. Soc. Am. A 11, 2305-2319 (1994). [CrossRef]
  35. A. Aiello, G. Puentes, and J. P. Woerdman, “Linear optics and quantum maps,” Phys. Rev. A 76, 032323 (2007). [CrossRef]
  36. Sudha, A. V. G. Rao, A. R. U. Devi, and A. K. Rajagopal, “Positive-operator-valued measure view of the ensemble approach to polarization optics,” J. Opt. Soc. Am. A 25, 874-880 (2008). [CrossRef]
  37. M. Sanjay Kumar and R. Simon, “Characterization of Mueller matrices in polarization optics,” Opt. Commun. 88, 464-470 (1992). [CrossRef]
  38. B. J. Howell, “Measurement of the polarization effects of an instrument using partially polarized light,” Appl. Opt. 18, 809-812 (1979). [CrossRef] [PubMed]
  39. C. R. Givens and B. Kostinski, “A simple necessary and sufficient condition on physically realizable Mueller matrices,” J. Mod. Opt. 40, 471-481 (1993). [CrossRef]
  40. S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106-1113 (1996). [CrossRef]
  41. R. Ossikovski, A. De Martino, and S. Guyot, “Forward and reverse product decompositions of depolarizing Mueller matrices,” Opt. Lett. 32, 689-691 (2007). [CrossRef] [PubMed]
  42. V. Devlaminck and P. Terrier, “Definition of a parameter form for non-singular Mueller matrices,” J. Opt. Soc. Am. A 25, 2636-2643 (2008). [CrossRef]
  43. F. Boulvert, G. Le Brun, B. Le Jeune, J. Cariou, and L. Martin, “Decomposition algorithm for an experimental Mueller matrix,” Opt. Commun. 282, 692-704 (2009). [CrossRef]
  44. A. V. Gopala Rao, K. S. Mallesh, and Sudha, “On the algebraic characterization of a Mueller matrix in polarization optics: I. Identifying a Mueller matrix from its N matrix,” J. Mod. Opt. 45, 955-987 (1998).
  45. A. V. Gopala Rao, K. S. Mallesh, and Sudha, “On the algebraic characterization of a Mueller matrix in polarization optics: II. Necessary and sufficient condition for Jones-derived Mueller matrix,” J. Mod. Opt. 45, 989-999 (1998).
  46. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  47. N. Mukunda, R. Simon, and E. C. G. Sudarshan, “Fourier optics for the Maxwell field: formalism and applications,” J. Opt. Soc. Am. A 2, 416-426 (1985). [CrossRef]
  48. J. J. van Zyl, C. H. Papas, and C. Elachi, “On the optimum polarization of incoherently reflected waves,” IEEE Trans. Antennas Propag. AP-35, 818-825 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited