OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 2 — Feb. 1, 2010
  • pp: 206–217

The prior statistics of object colors

Jan J. Koenderink  »View Author Affiliations


JOSA A, Vol. 27, Issue 2, pp. 206-217 (2010)
http://dx.doi.org/10.1364/JOSAA.27.000206


View Full Text Article

Enhanced HTML    Acrobat PDF (716 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The prior statistics of object colors is of much interest because extensive statistical investigations of reflectance spectra reveal highly non-uniform structure in color space common to several very different databases. This common structure is due to the visual system rather than to the statistics of environmental structure. Analysis involves an investigation of the proper sample space of spectral reflectance factors and of the statistical consequences of the projection of spectral reflectances on the color solid. Even in the case of reflectance statistics that are translationally invariant with respect to the wavelength dimension, the statistics of object colors is highly non-uniform. The qualitative nature of this non-uniformity is due to trichromacy.

© 2010 Optical Society of America

OCIS Codes
(330.1690) Vision, color, and visual optics : Color
(330.1710) Vision, color, and visual optics : Color, measurement
(330.1720) Vision, color, and visual optics : Color vision
(330.1730) Vision, color, and visual optics : Colorimetry
(330.6180) Vision, color, and visual optics : Spectral discrimination
(330.1715) Vision, color, and visual optics : Color, rendering and metamerism

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: March 25, 2009
Revised Manuscript: October 25, 2009
Manuscript Accepted: October 27, 2009
Published: January 19, 2010

Virtual Issues
Vol. 5, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Jan J. Koenderink, "The prior statistics of object colors," J. Opt. Soc. Am. A 27, 206-217 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-2-206


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T.-W. Lee, T. T. Wachtler, and T. J. Sejnowski, “Color opponency is an efficient representation of spectral properties in natural scenes,” Vision Res. 42, 2095-2103 (2002). [CrossRef] [PubMed]
  2. A. Lewis and L. Zhaoping, “Are cone sensitivities determined by natural color statistics?” J. Vision 6, 285-302 (2006). [CrossRef]
  3. D. T. Lindsey and A. M. Brown, “Sunlight and 'Blue',” Psychol. Sci. 15, 291-294 (2004). [CrossRef] [PubMed]
  4. G. Wyszecki and W. S. Stiles, Color Science (Wiley, 1967).
  5. The problem is that the experimental uncertainly is usually fixed in absolute terms (for typical databases of the order of 0.01), whereas for reflectance factors near zero or one it is the difference from zero or one that is relevant, and this difference easily drowns in the experimental uncertainty.
  6. F. Long and D. Purves, “Natural scene statistics as the universal basis of color context effects,” Proc. Natl. Acad. Sci. U.S.A. 100, 15190-15193 (2003). [CrossRef] [PubMed]
  7. F. Long, Z. Yang, and D. Purves, “Spectral statistics in natural scenes predict hue, saturation, and brightness,” Proc. Natl. Acad. Sci. U.S.A. 103, 6013-6018 (2006). [CrossRef] [PubMed]
  8. D. L. Philipona and J. K. O'Regan, “Color naming, unique hues, and hue cancellation predicted from singularities in reflection properties,” Visual Neurosci. 23, 331-339 (2006). [CrossRef]
  9. D. B. Judd and G. Wyszecki, Color in Business, Science, and Industry (Wiley, 1975).
  10. J. C. Maxwell, “On the theory of compound colours, and the relations of the colours of the spectrum,” Philos. Trans. R. Soc. London 150, 57-84 (1860). [CrossRef]
  11. M. G. J. Minnaert, Light and Color in the Outdoors (Springer-Verlag, 1993). [CrossRef]
  12. D. Katz, Die Erscheinungsweisen der Farben und ihre Beeinflussung durch die individuelle Erfahrung (Barth, 1911).
  13. P. Bouguer, L'Essai d'Optique sur la Gradation de la Lumière (Gauthier-Villars et Cie, 1729).
  14. J. H. Lambert, Photometria sive de mensure de gratibus luminis, colorum umbræ (Eberhard Klett, 1760).
  15. A “reflectance factor” is the ratio of the radiance scattered to the eye by some surface and the radiance that would have been scattered to the eye by an ideal Lambertian surface. The advantage of the “reflectance factor” is that this avoids complications with the viewing and illumination geometries.
  16. F. Nicodemus, “Directional reflectance and emissivity of an opaque surface,” Appl. Opt. 4, 767-773 (1965). [CrossRef]
  17. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Univ. Press, 1999). [PubMed]
  18. G. Kortüm, Reflexionsspektroskopie (Springer, 1969).
  19. L. T. Maloney, “Evaluation of linear models of surface spectral reflectance with small number of parameters,” J. Opt. Soc. Am. A 3, 1973-1683 (1986). [CrossRef]
  20. H. S. Fairman and M. Brill, “The principal components of reflectances,” Color Res. Appl. 29, 104-110 (2004). [CrossRef]
  21. J. A. Worthey and M. Brill, “Principal components applied to modeling: dealing with the mean vector,” Color Res. Appl. 29, 261-266 (2004). [CrossRef]
  22. A. Schuster, “Radiation through a foggy atmosphere,” Astrophys. J. 21, 1-22 (1905). [CrossRef]
  23. P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Z. Tech. Phys. 12, 92-99 (1931).
  24. H. Jeffreys, Scientific Inference (Cambridge Univ. Press, 2003).
  25. E. T. Jaynes, Probability Theory: The Logic of Science (Cambridge Univ. Press, 1931).
  26. A. V. Oppenheim, R. W. Shafer, and T. G. Stockham, Jr., “Nonlinear filtering of multiplied and convolved signals,” Proc. IEEE 56, 1264-1291 (1968). [CrossRef]
  27. D. Sen, M. N. S. Swamy, and M. O. Ahmad, “Unbiased homomorphic system and its application in reducing multiplicative noise,” IEEE Proc. Vis. Image Signal Process. 153, 521-537 (2006). [CrossRef]
  28. E. L. Krinov, “Spectral'naye otrzhatel'naya sposobnost' prirodnykh obrazovanii,” Izd. Akad. Nauk USSR, emphSpectral reflectance properties of natural formations, G. Belkov, transl., TT-439 (National Research Council of Canada, 1953).
  29. O. Kohonen, J. Parkkinen, and T. Jääskeläinen, “Databases for spectral color science,” Color Res. Appl. 31, 381-388 (2006). [CrossRef]
  30. Here the arc length of the short-wavelength-pass edge colors is used to define the quartiles and median of the wavelength domain. The value of the relative bandwidth quoted here is the interquartile range divided by the median. The visual band is thus extremely narrow by physical standards, and one has no reason to expect significant variations due to the physics.
  31. CIE Proceedings Vienna Session 1963, Vol. B, 209-220(Committee Report E-1.4.1), (Bureau Central de la CIE, Paris, 1964).
  32. R. S. Berns, Billmeyer and Saltzman's Principles of Color Technology (Wiley, 2000).
  33. E. Schrödinger, “Theorie der Pigmente von größter Leuchtkraft,” Ann. Phys. 62, 603-622 (1920). [CrossRef]
  34. P. J. Bouma, Physical Aspect of Colour (Macmillan, 1971).
  35. Consider the locus of points {x1,x2,...,xn}∊R2 under the constraint 0⩽xi⩽ai. For n=1, one has the segment [0,a1], for n=2 the rectangle with vertices {0,0}, {a1,0}, {a1,a2} and {0,a2}, i.e., a rectangle, and so forth. In general, one obtains a “cuboid” (for a1,...,an=1 a unit hypercube) which is--in the absence of a metric--more appropriately called a “hyperparallelepiped.”
  36. S. Axler, Linear Algebra Done Right (Springer, 1997).
  37. A. Kirschmann, “Das Umgekehrte Spektrum Seine Komplementarverhaltnisse,” Phys. Z. 18, 195-205 (1917).
  38. J. W. von Goethe, Zur Farbenlehre (Cotta, 1808-1810).
  39. I. Newton, Opticks or a Treatise on the Reflexions, Refractions, Inflexions and Colours of Light, 4th ed. (William Innys, 1730).
  40. The volume of the color solid is only 1.43 times that of the inscribed parallelopiped of maximum volume, whereas the circumscribed sphere of a cube has 2.72 (namely, π3/2) times the volume of that cube. (Such numbers are very relevant yet cannot be found in textbooks on colorimetry.) Thus the color solid is rather close to the linear transform of a unit cube.
  41. W. Blaschke, Vorlesungen der Differentialgeometrie und geometrische Grundlagen von Einsteins Relativittstheorie. II. Affine Differentialgeometrie, bearbeitet von K. Reidemeister. Erste und zweite Auflage (Julius Springer, 1923).
  42. D. Davis, “Generic affine differential geometry of curves in Rn,” Proc. R. Soc. Edinburgh, Sect. A: Math. Phys. Sci. 136, 1195-1205 (2006). [CrossRef]
  43. J. B. Cohen and W. E. Kappauf, “Metameric color stimuli, fundamental metamers, and Wyszeckis metameric blacks,” Am. J. Psychol. 95, 537-564 (1982). [CrossRef] [PubMed]
  44. Cohen implicitly applies the usual Cartesian inner product on radiant power spectra on wavelength basis. This turns the space of spectra into a Hilbert space. The visual projection then can be turned into an orthogonal projection, thus enabling the definition of “visual space.” Accepting an orthonormal basis for visual space then leads to a representation very similar to the one constructed here. However, this seems more of a lucky strike. Moreover, the metric adopted by Cohen is rather ad hoc and hard to defend. It is certainly preferable to avoid the choice of metric altogether.
  45. A. Schopenhauer, Über das Sehn und die Farben (Johann Friedrich Hartknoch, 1816).
  46. R. A. Crone, “Schopenhauer on vision and the colors,” Doc. Ophthalmol. 93, 61-71 (1997). [CrossRef] [PubMed]
  47. H. S. M. Coxeter, Introduction to Geometry, 2nd ed. (Wiley, 1989).
  48. The volume of the color solid is 1.43 times the volume of the maximum volume crate. The cube root of 1.43 is 1.13, which yields a more intuitive (because linear instead of volumetric) measure of the difference.
  49. R. G. Kuehni, “Focal color variability and unique hue stimulus variability,” J. Cogn. Culture 5, 409-426 (2005). [CrossRef]
  50. W. A. Thornton, “Luminosity and color-rendering capability of white light,” J. Opt. Soc. Am. 61, 1155-1163 (1991). [CrossRef]
  51. The dominant wavelengths of the secondary colors are 483 nm for cyan and 567 nm for yellow. (Magenta is complementary to green and might--formally--be said to have dominant wavelength −527 nm.)
  52. S. Skiena, “Hasse diagrams,” in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica (Addison-Wesley, 1990), pp. 163, 169-170, and 20-208.
  53. G. Birkhoff, Lattice Theory, 3rd ed., Colloquium Publications 25 (American Mathematical Society, 1967).
  54. B. S. W. Schröder, Ordered Sets: An Introduction (Birkhäuser, 2003). [CrossRef]
  55. J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes, Computer Graphics: Principles and Practice in C (Addison-Wesley Professional, 1995).
  56. A. F. Moebius, Der baryzentrische Calcul (orig. 1827) (Georg Olms, 1976).
  57. Ratios of areas are not invariant in the chromaticity diagram. Almost all representations in the textbooks give an extremely lopsided view of the gamut of object colors. The boundary of the gamut (that is the spectrum locus) is the image of the black point and is irrelevant for most applications, despite the fact that it is usually suggested that it is the locus of the most vivid colors (apparently because it is monochromatic). But the spectral reflectances of monochromatic object colors are blip functions of vanishing support, thus these colors are blacks!
  58. Of the NCSU objects data base only 3 out of the 170 samples yield more than 1% over- or underflow, the worst case being a 3% underflow in the green channel, which is perceptually irrelevant.
  59. W. Ostwald, Farbkunde (S. Hirzel, 1923).
  60. W. Ostwald, Die Farbenfibel (Unesma, 1926).
  61. W. Ostwald, Er und Ich (Theodor Martins Textilverlag, 1936).
  62. W. Ostwald, Der Farbatlas (Unesma, 1917).
  63. M. Richter, “Untersuchungen zur Aufstellung eines empfindungsgemäß gleichabständigen Farbsystems,” Z. Wiss. Photographie 45, 139-162(1950).
  64. Ph. O. Runge, Farbenkugel oder Construction des Verhältnisses aller Mischungen der Farben zu einander und ihrer vollständigen Affinität; mit angehängtem Versuch einer Ableitung der Harmonie in den Zusammenstellungen der Farben (Friedrich Perthes, 1810).
  65. P. Klee, The Thinking Eye (Lund Humpries, 1961).
  66. S. Quiller, Color Choices (Watson-Guptill Publications, 1989).
  67. R. G. Kuehni, “Development of the idea of simple colors in the 16th and 17th centuries,” Color Res. Appl. 32, 158-162 (2004).
  68. A. H. Munsell, A Color Notation (G. H. Ellis Co., 1905).
  69. W. Blaschke, Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einstein's Relativiteitstheorie. Volume 1, Elementare Differentialgeometrie (Julius Springer, 1921).
  70. S. Rösch, “Die Kennzeichnung der Farben,” Phys. Z. 29, 83-91 (1928).
  71. G. Wyszecki, “Valenzmetrische Undersuchung des Zusammenhanges zwischen normaler und anomaler Trichromasie,” Farbe 2, 39-52 (1953).
  72. E. Hering, “Zur Lehre vom Lichtsinn,” Sitzungsber. K. Preuss. Akad. Wiss. Math. Naturwiss. Kl. 5-24 (1872).
  73. L. M. Hurvich and D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384-404 (1957). [CrossRef] [PubMed]
  74. E. Schrödinger, “Über das Verhältnis der Vierfarben-zur Driefarbentheorie,” Sitzungsber. Akad. Wiss. Wien Math. Naturwiss. Kl. Abt 2a 134, 471-490 (1925).
  75. E. H. Land, “The retinex theory of colour vision,” Proc. R. Inst. Great Britain 47, 23-58 (1974).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited