OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 2 — Feb. 1, 2010
  • pp: 238–244

Far-field properties in two off-axis superimposed Laguerre–Gaussian beams beyond the paraxial approximation

Yamei Luo and Baida Lü  »View Author Affiliations

JOSA A, Vol. 27, Issue 2, pp. 238-244 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1063 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The analytical far-field expressions for the TE and TM terms and energy flux distributions in two off-axis superimposed nonparaxial Laguerre–Gaussian beams with azimuthal and radial indices l 1 = l 2 = + 1 , p 1 = p 2 = 0 are derived and used to study the far-field properties including phase singularities and energy flux distributions of the resulting beam, where our main attention focuses on the dependence of phase singularities on the controlling parameters such as the off-axis distance, relative phase, amplitude ratio, and waist widths of superimposed beams, and the symmetry property of edge dislocations and energy flux distributions. The results are interpreted and compared with previous work.

© 2010 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(350.5500) Other areas of optics : Propagation
(140.3298) Lasers and laser optics : Laser beam combining
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

Original Manuscript: September 28, 2009
Revised Manuscript: December 7, 2009
Manuscript Accepted: December 7, 2009
Published: January 21, 2010

Yamei Luo and Baida Lü, "Far-field properties in two off-axis superimposed Laguerre-Gaussian beams beyond the paraxial approximation," J. Opt. Soc. Am. A 27, 238-244 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. F. Yelden, H. J. J. Seguin, C. E. Capjack, and S. K. Nikumb, “Multichannel slab discharge for CO2 laser excitation,” Appl. Phys. Lett. 58, 693-695 (1991). [CrossRef]
  2. H. J. Baker, D. R. Hall, A. M. Hornby, R. J. Morley, M. R. Taghizadeh, and E. F. Yelden, “Propagation characteristics of coherent array beams from carbon dioxide waveguide lasers,” IEEE J. Quantum Electron. 32, 400-407 (1996). [CrossRef]
  3. K. M. Abramski, A. D. Colley, H. J. Baker, and D. R. Hall, “High-power two-dimensional waveguide CO2 laser arrays,” IEEE J. Quantum Electron. 32, 340-349 (1996). [CrossRef]
  4. J. D. Strohschein, H. J. J. Seguin, and C. E. Capjack, “Beam propagation contrasts for a radial laser array,” Appl. Opt. 37, 1045-1048 (1998). [CrossRef]
  5. G. Hergenhan, B. Lücke, and U. Branch, “Coherent coupling of vertical-cavity surface-emitting laser arrays and efficient beam combining by diffractive optical elements: concept and experimental verification,” Appl. Opt. 42, 1667-1680 (2003). [CrossRef] [PubMed]
  6. R. Xiao, J. Zhou, M. Liu, and Z. F. Jiang, “Coherent combining technology of master oscillator power amplifier fiber arrays,” Opt. Express 16, 2015-2022 (2008). [CrossRef] [PubMed]
  7. G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40, 73-87 (1993). [CrossRef]
  8. V. Pyragaite and A. Stabinis, “Free-space propagation of overlapping light vortex beams,” Opt. Commun. 213, 187-191 (2002). [CrossRef]
  9. G. Molina-Terriza, J. Recolons, J. P. Torres, L. Torner, and E. M. Wright, “Observation of the dynamical inversion of the topological charge of an optical vortex,” Phys. Rev. Lett. 87, 023902 (2001). [CrossRef]
  10. I. D. Maleev and G. A. Swartzlander, Jr., “Composite optical vortices,” J. Opt. Soc. Am. B 20, 1169-1176 (2003). [CrossRef]
  11. K. Cheng and B. Lü, “Composite coherent vortices in coherent and incoherent superpositions of two off-axis partially coherent vortex beams,” J. Mod. Opt. 55, 2751-2764 (2008). [CrossRef]
  12. K. Cheng, H. Yan, and B. Lü, “Composite coherence vortices in the superimposed field of partially coherent vortex beams and their propagation dynamics,” Acta Phys. Sin. 57, 4911-4920 (2008).
  13. J. Li and B. Lü, “Propagation of Gaussian Schell-model vortex beams through atmospheric turbulence and evolution of coherent vortices,” J. Opt. A, Pure Appl. Opt. 11, 045710-1-9 (2009). [CrossRef]
  14. R. Martínez-Herrero, P. M. Mejías, S. Bosch, and A. Carnicer, “Vectorial structure of nonparaxial electromagnetic beams,” J. Opt. Soc. Am. A 18, 1678-1680 (2001). [CrossRef]
  15. H. Guo, J. Chen, and S. Zhuang, “Vector plane wave spectrum of an arbitrary polarized electromagnetic wave,” Opt. Express 14, 2095-2100 (2006). [CrossRef] [PubMed]
  16. G. Zhou, “Analytical vectorial structure of Laguerre-Gaussian beam in the far field,” Opt. Lett. 31, 2616-2618 (2006). [CrossRef] [PubMed]
  17. G. Zhou, Y. Ni, and Z. Zhang, “Analytical vectorial structure of non-paraxial nonsymmetrical vector Gaussian beam in the far field,” Opt. Commun. 272, 32-39 (2007). [CrossRef]
  18. G. Zhou, L. Chen, and Y. Ni, “Investigation in the far field characteristics of TM polarized Gaussian beam from the vectorial structure,” Opt. Laser Technol. 39, 1473-1477 (2007). [CrossRef]
  19. G. Wu, Q. Lou, and J. Zhou, “Analytical vectorial structure of hollow Gaussian beams in the far field,” Opt. Express 16, 6417-6424 (2008). [CrossRef] [PubMed]
  20. G. Zhou, X. Chu, and J. Zheng, “Investigation in hollow Gaussian beam from vectorial structure,” Opt. Commun. 281, 5653-5658 (2008). [CrossRef]
  21. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995).
  22. X. Zeng, C. Liang, Y. An, “Far-field radiation of planar Gaussian sources and comparison with solutions based on the parabolic approximation,” Appl. Opt. 36, 2042-2047 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited