OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 2 — Feb. 1, 2010
  • pp: 251–258

Recovery of spectral reflectances of imaged objects by the use of features of spectral reflectances

Noriyuki Shimano and Mikiya Hironaga  »View Author Affiliations

JOSA A, Vol. 27, Issue 2, pp. 251-258 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (629 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recovery of spectral reflectances of objects being imaged through the use of sensor responses is important to reproduce color images under various illuminations. Although the Wiener estimation is usually used for the recovery, the recovery performance of the estimation depends on the autocorrelation matrix of the spectral reflectances and the noise present in an image acquisition system. The purpose of the present paper is to show that the Wiener estimation with the noise variance estimated by the previous proposal [ IEEE Trans. Image Process. 16, 1848 (2006) ] and with the autocorrelation matrix that uses the features of the spectral reflectances recovered by the previous method is very effective in greatly improving the performance.

© 2010 Optical Society of America

OCIS Codes
(150.0150) Machine vision : Machine vision
(330.1690) Vision, color, and visual optics : Color
(330.1730) Vision, color, and visual optics : Colorimetry
(330.6180) Vision, color, and visual optics : Spectral discrimination

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: July 28, 2009
Revised Manuscript: December 10, 2009
Manuscript Accepted: December 14, 2009
Published: January 21, 2010

Virtual Issues
Vol. 5, Iss. 4 Virtual Journal for Biomedical Optics

Noriyuki Shimano and Mikiya Hironaga, "Recovery of spectral reflectances of imaged objects by the use of features of spectral reflectances," J. Opt. Soc. Am. A 27, 251-258 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. D. Fairchild, Color Appearance Models (Addison-Wesley, 1997).
  2. Y. Nayatani, K. Takahama, and H. Sobagaki, “Prediction of color appearance under various adapting conditions,” Color Res. Appl. 11, 62-72 (1986). [CrossRef]
  3. R. W. G. Hunt, “Revised colour-appearance model for related and unrelated colours,” Color Res. Appl. 16, 146-163 (1991). [CrossRef]
  4. H. C. Lee, E. J. Breneman, and C. P. Schulte, “Modeling light reflection for computer color vision,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 79-86 (1990). [CrossRef]
  5. G. Healey and D. Slater, “Global color constancy: recognition of objects by use of illumination-invariant properties of color distributions,” J. Opt. Soc. Am. A 11, 3003-3010 (1994). [CrossRef]
  6. G. J. Klinker, S. A. Shafer, and T. Kanade, “A physical approach to color image understanding,” Int. J. Comput. Vis. 4, 7-38 (1990). [CrossRef]
  7. L. T. Maloney and B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29-33 (1986). [CrossRef] [PubMed]
  8. J. Ho, B. V. Funt, and M. S. Drew, “Separating a color signal into illumination and surface reflectance components: Theory and applications,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 966-977 (1990). [CrossRef]
  9. G. Iverson and M. D'Zumura, “Criteria for color constancy in trichromatic linear models,” J. Opt. Soc. Am. A 11, 1970-1975 (1994). [CrossRef]
  10. A. Rosenfeld and A. C. Kak, Digital Picture Processing, 2nd ed. (Academic, 1982).
  11. G. Sharma and H. J. Trussell, “Figures of merit for color scanners,” IEEE Trans. Image Process. 6, 990-1001 (1997). [CrossRef] [PubMed]
  12. H. Haneishi, T. Hasegawa, N. A. Hosoi, Y. Yokoyama, N. Tsumura, and Y. Miyake, “System design for accurately estimating the spectral reflectance of art paintings,” Appl. Opt. 39, 6621-6632 (2000). [CrossRef]
  13. J. Cohen, “Dependency of spectral reflectance curves of the Munsell color chips,” Psychonomic Sci. 1, 369-370 (1964).
  14. L. T. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673-1683 (1986). [CrossRef] [PubMed]
  15. J. P. S. Parkkinen, J. Hallikainen, and T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318-322 (1989). [CrossRef]
  16. M. Shi and G. Healey, “Using reflectance models for color scanner calibration,” J. Opt. Soc. Am. A 19, 645-656 (2002). [CrossRef]
  17. Y. Zhao, L. A. Taplin, M. Nezamabadi, and R. S. Berns, “Using the matrix R method for spectral image archives,” in Proceedings of The 10th Congress of the International Colour Association(AIC'5) (AIC, 2005), pp. 469-472.
  18. H. L. Shen and H. H. Xin, “Spectral characterization of a color scanner based on optimized adaptive estimation,” J. Opt. Soc. Am. A 23, 1566-1569 (2006). [CrossRef]
  19. D. Connah, J. Y. Hardeberg, and S. Westland, “Comparison of linear spectral reconstruction methods for multispectral imaging,” Proceedings IEEE International Conference on Image Processing (IEEE, 2004), pp. 1497-1500.
  20. F. H. Imai and R. S. Berns, “Spectral estimation using trichromatic digital cameras,” in Proceedings of International Symposium on Multispectral Imaging and Color Reproduction for Digital Archives, Chiba, Japan, 21-22 October 1999, pp. 42-49.
  21. N. Shimano, “Recovery of spectral reflectances of objects being imaged without prior knowledge,” IEEE Trans. Image Process. 15, 1848-1856 (2006). [CrossRef] [PubMed]
  22. N. Shimano, K. Terai, and M. Hironaga, “Recovery of spectral reflectances of objects being imaged by multispectral cameras,” J. Opt. Soc. Am. A 24, 3211-3219 (2007). [CrossRef]
  23. N. Shimano and M. Hironaga, “A new proposal for the accurate recovery of spectral reflectances of imaged objects without prior knowledge,” in Archiving 2008, Proceedings of Society of Imaging Science and Technology, Bern (IS&T, 2008), pp. 155-158.
  24. N. Shimano, “Application of a colorimetric evaluation model to multispectral color image acquisition systems,” J. Imaging Sci. Technol. 49, 588-593 (2005).
  25. N. Shimano, “Optimization of spectral sensitivities with Gaussian distribution functions for a color image acquisition device in the presence of noise,” Opt. Eng. (Bellingham) 45, 013201-1-8 (2006). [CrossRef]
  26. “Standard Object Colour Spectra Database for Colour Reproduction Evaluation (SOCS),” Japanese Industrial Standards Association, TR X 0012:1998 (1998).
  27. A. A. Afifi and S. P. Azen, Statistical Analysis (Academic, 1972), Chap. 3.
  28. G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed. (The Johns Hopkins Univ. Press, 1996), p. 55.
  29. B. Noble and J. W. Daniel, Applied Linear Algebra, 3rd. ed. (Prentice-Hall, 1988), pp. 338-346.
  30. M. A. López-Álvarez, J. Hernández-Andrés, J. Romero, and R. L. Lee, Jr., “Designing a practical system for spectral imaging of skylight,” Appl. Opt. 44, 5688-5695 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited