OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 2 — Feb. 1, 2010
  • pp: 308–318

Multilevel Green’s function interpolation method for analysis of 3-D frequency selective structures using volume/surface integral equation

Yan Shi and Chi Hou Chan  »View Author Affiliations


JOSA A, Vol. 27, Issue 2, pp. 308-318 (2010)
http://dx.doi.org/10.1364/JOSAA.27.000308


View Full Text Article

Enhanced HTML    Acrobat PDF (1389 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we present the multilevel Green’s function interpolation method (MLGFIM) for analyses of three-dimensional doubly periodic structures consisting of dielectric media and conducting objects. The volume integral equation (VIE) and surface integral equation (SIE) are adopted, respectively, for the inhomogeneous dielectric and conducting objects in a unit cell. Conformal basis functions defined on curvilinear hexahedron and quadrilateral elements are used to solve the volume/surface integral equation (VSIE). Periodic boundary conditions are introduced at the boundaries of the unit cell. Computation of the space-domain Green’s function is accelerated by means of Ewald’s transformation. A periodic octary-cube-tree scheme is developed to allow adaptation of the MLGFIM for analyses of doubly periodic structures. The proposed algorithm is first validated by comparison with published data in the open literature. More complex periodic structures, such as dielectric coated conducting shells, folded dielectric structures, photonic bandgap structures, and split ring resonators (SRRs), are then simulated to illustrate that the MLGFIM has a computational complexity of O ( N ) when applied to periodic structures.

© 2010 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.3870) General : Mathematics
(000.4430) General : Numerical approximation and analysis
(350.7420) Other areas of optics : Waves

ToC Category:
Mathematical methods in physics

History
Original Manuscript: September 18, 2009
Revised Manuscript: December 19, 2009
Manuscript Accepted: December 19, 2009
Published: January 25, 2010

Citation
Yan Shi and Chi Hou Chan, "Multilevel Green's function interpolation method for analysis of 3-D frequency selective structures using volume/surface integral equation," J. Opt. Soc. Am. A 27, 308-318 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-2-308


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces--a review,” IEEE Proc. 76, 1593-1615 (1988). [CrossRef]
  2. K. Yasumoto, Electromagnetic Theory and Applications for Photonic Crystals (Optical Engineering) (CRC Press, 2005). [CrossRef]
  3. H. Y. D. Yang, R. Diaz, and N. G. Alexopoulos, “Reflection and transmission of waves from multilayer structures with planar implanted periodic material blocks,” J. Opt. Soc. Am. B 14, 2513-2521 (1997). [CrossRef]
  4. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley-Interscience, 2006).
  5. J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, 2002).
  6. J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications (IEEE Press, 1998).
  7. S. D. Gedney, J. F. Lee, and R. Mittra, “A combined FEM/MoM approach to analyze the plane wave diffraction by arbitrary gratings,” IEEE Trans. Microwave Theory Technol. 40, 363-370 (1992). [CrossRef]
  8. T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antennas Propag. 47, 843-850 (1999). [CrossRef]
  9. R. A. Kipp and C. H. Chan, “A numerically efficient technique for the method of moments solution for periodic structures in layered media,” IEEE Trans. Microwave Theory Technol. 42, 635-643 (1994). [CrossRef]
  10. L. C. Trintinalia and H. Ling, “Integral equation modeling of multilayered doubly-periodic lossy structures using periodic boundary condition and a connection scheme,” IEEE Trans. Antennas Propag. 52, 2253-2261 (2004). [CrossRef]
  11. C. F. Yang, W. D. Burnside, and R. C. Rudduck, “A doubly periodic moment method solution for the analysis and design of an absorber covered wall,” IEEE Trans. Antennas Propag. 41, 600-609 (1993). [CrossRef]
  12. I. Stevanovic, P. C. Valero, K. Blagovic, F. Bongard, and J. R. Mosig, “Integral equation analysis of 3-D metallic objects arranged in 2-D lattices using the Ewald transformation,” IEEE Trans. Microwave Theory Technol. 54, 3688-3697 (2006). [CrossRef]
  13. M. Bozzi and L. Perregrini, “Analysis of multilayered printed frequency selective surfaces by the MoM/BI-REM method,” IEEE Trans. Antennas Propag. 51, 2830-2836 (2003). [CrossRef]
  14. V. Rokhlin, “Rapid solution of integral equations of classic potential theory,” J. Comput. Phys. 60, 187-207 (1985). [CrossRef]
  15. W. C. Chew, J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics (Artech House, 2001).
  16. E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems,” Radio Sci. 31, 1225-1251 (1996). [CrossRef]
  17. F. Ling, C. F. Wang, and J. M. Jin, “An efficient algorithm for analyzing large-scale microstrip structures using adaptive integral method combined with discrete complex image method,” IEEE Trans. Microwave Theory Technol. 48, 832-837 (2000). [CrossRef]
  18. C. H. Chan, C. M. Lin, L. Tsang, and Y. F. Leung, “A sparse-matrix/canonical grid method for analyzing microstrip structures,” IEICE Trans. Electron. E80-C, 1354-1359 (1997).
  19. S. Q. Li, Y. X. Yu, C. H. Chan, K. F. Chan, and L. Tsang, “A sparse-matrix/canonical grid method for analyzing densely packed interconnects,” IEEE Trans. Microwave Theory Technol. 49, 1221-1228 (2001). [CrossRef]
  20. J. R. Phillips and J. K. White, “A precorrected-FFT method for electrostatic analysis of complicated 3-D structures,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 16, 1059-1072 (1997). [CrossRef]
  21. X. C. Nie, N. Yuan, L. W. Li, Y. B. Gan, and T. S. Yeo, “A fast volume-surface integral equation solver for scattering from composite conducting-dielectric objects,” IEEE Trans. Antennas Propag. 52, 818-824 (2005).
  22. H. G. Wang, C. H. Chan, and L. Tsang, “A new multilevel Green's function interpolation method for large-scale low-frequency EM simulations,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24, 1427-1443 (2005). [CrossRef]
  23. H. G. Wang and C. H. Chan, “The implementation of multilevel Green's function interpolation method for full-wave electromagnetic problems,” IEEE Trans. Antennas Propag. 55, 1348-1358 (2007). [CrossRef]
  24. L. Li, H. G. Wang, and C. H. Chan, “An improved multilevel Green's function interpolation method with adaptive phase compensation for large-scale full-wave EM simulation,” IEEE Trans. Antennas Propag. 56, 1381-1393 (2008). [CrossRef]
  25. Y. Shi, H. G. Wang, L. Li, and C. H. Chan, “Multilevel Green's function interpolation method for scattering from composite metallic and dielectric objects,” J. Opt. Soc. Am. A 25, 2535-2548 (2008). [CrossRef]
  26. Y. Shi and C. H. Chan, “Solution to electromagnetic scattering by bi-isotropic media using multilevel Green's function interpolation method,” PIER 97, 259-274 (2009). [CrossRef]
  27. P. P. Ewald, “Die Berechnung optischer und elektrostatischer Gitterpotentiale,” Ann. Phys. 64, 253-287 (1921). [CrossRef]
  28. K. E. Jordan, G. R. Richter, and P. Sheng, “An efficient numerical evaluation of the Green's function for the Helmholtz operator on periodic structures,” J. Comput. Phys. 63, 222-235 (1986). [CrossRef]
  29. D. H. Schaubert, D. R. Wilton, and A. W. Glisson, “A tetrahedral modeling method for electromagnetic scattering by arbitrary shaped inhomogeneous dielectric bodies,” IEEE Trans. Antennas Propag. 32, 77-85 (1984). [CrossRef]
  30. S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409-418 (1982). [CrossRef]
  31. F. S. Johansson, “Frequency-scanned gratings consisting of photo-etched arrays,” IEEE Trans. Antennas Propag. 37, 996-1002 (1989). [CrossRef]
  32. E. Ozbay, A. Abeyta, G. Tuttle, M. C. Tringides, R. Biswas, M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945-1948 (1994). [CrossRef]
  33. T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited