OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 3 — Mar. 1, 2010
  • pp: 372–380

Nonparaxial propagation of a Gaussian optical vortex with initial radial polarization

Victor V. Kotlyar and Alexey A. Kovalev  »View Author Affiliations


JOSA A, Vol. 27, Issue 3, pp. 372-380 (2010)
http://dx.doi.org/10.1364/JOSAA.27.000372


View Full Text Article

Enhanced HTML    Acrobat PDF (441 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the nonparaxial diffraction of a Gaussian vortex beam with initial radial polarization and an arbitrary integer topological charge n. Analytical relationships for the radial, azimuthal, and longitudinal components of the E-vector are deduced. At n = 0 , the azimuthal component of the field equals zero, with the radial and axial components becoming coincident with the relationships reported in [ J. Opt. Soc. Am. A 26, 1366 (2009) ]. At any n > 1 , the vortex beam intensity on the optical axis equals zero, whereas at n = 1 ( 1 ) an intensity peak is found in the focus. Explicit analytical relationships for a Gaussian vortex beam with initial elliptical polarization are also derived. Relationships that describe the nonparaxial radially polarized Gaussian beam are deduced as a linear combination of the Gaussian vortex beams with n = 1 ( 1 ) and left- and right-hand circular polarization.

© 2010 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(050.4865) Diffraction and gratings : Optical vortices
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

History
Original Manuscript: November 5, 2009
Revised Manuscript: December 22, 2009
Manuscript Accepted: December 25, 2009
Published: February 8, 2010

Citation
Victor V. Kotlyar and Alexey A. Kovalev, "Nonparaxial propagation of a Gaussian optical vortex with initial radial polarization," J. Opt. Soc. Am. A 27, 372-380 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-3-372


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space variant subwavelength metal strip grating,” Appl. Phys. Lett. 79, 1587-1589 (2001). [CrossRef]
  2. D. J. Armstrong, M. C. Philips, and A. V. Smith, “Generation of radially polarized beams with an image rotating resonator,” Appl. Opt. 42, 3550-3554 (2003). [CrossRef]
  3. N. Passilly, R. de S. Denis, K. Aït-Ameur, F. Treussart, R. Hierle, and J.-F. Roch, “Simple interferometric technique for generation of a radially polarized light beam,” J. Opt. Soc. Am. A 22, 984-991 (2005). [CrossRef]
  4. G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers by Laguerre-Gaussian beams,” Opt. Commun. 237, 89-95 (2004). [CrossRef]
  5. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455-1461 (1999). [CrossRef]
  6. K. T. Gahagan and G. A. Swartzlander, Jr., “Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap,” J. Opt. Soc. Am. B 16, 533-537 (1999). [CrossRef]
  7. G. Wu, Q. Lou, J. Zhou, J. Dong, and Y. Wei, “Focal shift in focused radially polarized ultrashort pulsed laser beams,” Appl. Opt. 46, 6251-6255 (2007). [CrossRef]
  8. D. Deng, “Nonparaxial propagation of radially polarized light beams,” J. Opt. Soc. Am. B 23, 1228-1234 (2006). [CrossRef]
  9. P. Banerjee, G. Cook, and D. Evans, “A q-parameter approach to analysis of propagation, focusing, and waveguiding of radially polarized Gaussian beams,” J. Opt. Soc. Am. A 26, 1366-1374 (2009). [CrossRef]
  10. V. Kotlyar, A. Almazov, S. Khonina, V. Soifer, H. Elfstrom, and J. Turunen, “Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate,” J. Opt. Soc. Am. A 22, 849-861 (2005). [CrossRef]
  11. V. V. Kotlyar, A. A. Kovalev, R. V. Skidanov, O. Yu. Moiseev, and V. A. Soifer, “Diffraction of a finite-radius plane wave and a Gaussian beam by a helical axicon and a spiral phase plate,” J. Opt. Soc. Am. A 24, 1955-1964 (2007). [CrossRef]
  12. V. V. Kotlyar, A. A. Kovalev, S. N. Khonina, R. V. Skidanov, V. A. Soifer, H. Elfstrom, N. Tossavainen, and J. Turunen, “Diffraction of conic and Gaussian beams by a spiral phase plate,” Appl. Opt. 45, 2656-2665 (2006). [CrossRef]
  13. V. V. Kotlyar and A. A. Kovalev, “Family of hypergeometric laser beams,” J. Opt. Soc. Am. A 25, 262-270 (2008). [CrossRef]
  14. A. A. Kovalev and V. V. Kotlyar, “Nonparaxial vector diffraction of a Gaussian beam by a spiral phase plate,” Computer Optics 31, 19-22 (2007) (in Russian).
  15. V. V. Kotlyar and A. A. Kovalev, “Nonparaxial hypergeometric beams,” J. Opt. A, Pure Appl. Opt. 11, 045711 (2009). [CrossRef]
  16. M. Rashid, O. M. Marago, and P. H. Jones, “Focusing of high order cylindrical vector beams,” J. Opt. A, Pure Appl. Opt. 11, 065204 (2009). [CrossRef]
  17. B. Chen and J. Pu, “Tight focusing of elliptically polarized vortex beams,” Appl. Opt. 48, 1288-1294 (2009). [CrossRef]
  18. R. K. Luneburg, Mathematical Theory of Optics (Univ. of California Press, 1966).
  19. Z. Mei and D. Zhao, “Nonparaxial analysis of vectorial Laguerre-Bessel-Gaussian beams,” Opt. Express 15, 11942-11951 (2007). [CrossRef]
  20. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Elsevier, 2007).
  21. M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Applied Math. Series, 1965).
  22. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Manipulation of the Pancharatnam phase in vectorial vortices,” Opt. Express 14, 4208-4220 (2006). [CrossRef]
  23. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234-2239 (1990). [CrossRef]
  24. Y. Yirmiyahu, A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Excitation of a single hollow waveguide mode using inhomogeneous anisotropic subwavelength structures,” Opt. Express 15, 13404-13414 (2007). [CrossRef]
  25. Y. Li and E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39, 211-215 (1981). [CrossRef]
  26. W. H. Carter, “Focal shift and concept of effective Fresnel number for a Gaussian laser beam,” Appl. Opt. 21, 1989-1994 (1982). [CrossRef]
  27. Y. I. Salamin, “Electron acceleration from rest in vacuum by an axicon Gaussian laser beam,” Phys. Rev. A 73, 043402 (2006). [CrossRef]
  28. Q. Zhu, “Description of the propagation of a radially polarized beam with the scalar Kirchhoff diffraction,” J. Mod. Opt. 56(14), 1621-1625 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited