OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 3 — Mar. 1, 2010
  • pp: 381–389

Extreme spin-orbit coupling in crystal-traveling paraxial beams

Tatyana A. Fadeyeva and Alexander V. Volyar  »View Author Affiliations


JOSA A, Vol. 27, Issue 3, pp. 381-389 (2010)
http://dx.doi.org/10.1364/JOSAA.27.000381


View Full Text Article

Enhanced HTML    Acrobat PDF (906 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dynamics of the spin-orbit coupling in elegant and standard Hermite–Gaussian (HG), Laguerre–Gaussian (LG), and Bessel–Gaussian (BG) beams propagating through a uniaxial crystal are analyzed. We consider the structure of the electric fields of the paraxial beams and show that the extreme values of the spin and orbital angular momenta are inherent in the elegant HG and LG of high orders. The spin-orbit coupling in the BG beam of the lowest order can result in nearly 100% energy transport from a vortex-free beam to the vortex-bearing beam at a relatively small crystal length. The extreme spin-orbit coupling does not manifest itself in standard HG and LG beams.

© 2010 Optical Society of America

OCIS Codes
(260.0260) Physical optics : Physical optics
(260.1180) Physical optics : Crystal optics
(350.5030) Other areas of optics : Phase
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

History
Original Manuscript: September 9, 2009
Revised Manuscript: December 20, 2009
Manuscript Accepted: December 21, 2009
Published: February 9, 2010

Citation
Tatyana A. Fadeyeva and Alexander V. Volyar, "Extreme spin-orbit coupling in crystal-traveling paraxial beams," J. Opt. Soc. Am. A 27, 381-389 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-3-381


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Ya. Zel'dovich, “Optical Magnus effect,” Phys. Rev. A 45, 8204-8208 (1992). [CrossRef] [PubMed]
  2. V. S. Liberman and B. Ya. Zel'dovich, “Spin-orbit interaction of a photon in an inhomogeneous medium,” Phys. Rev. A 46, 5199-5207 (1992). [CrossRef] [PubMed]
  3. M. Soskin and M. Vasnetsov, “Singular optics,” in Progress in Optics, E.Wolf, ed. (North-Holand, 2001), Vol. 42, pp. 219-276. [CrossRef]
  4. C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Fiber optical vortices,” in Lasers, Optics and Electro-Optics Research Trends, L.I.Chen, ed. (Nova Science Publishers, 2007), pp. 131-223.
  5. K. Yu. Bliokh and Yu. P. Bliokh, “Polarization, transverse shifts and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet,” Phys. Rev. E 75, 066609 (2007). [CrossRef]
  6. V. Fedoseev, “Conservation laws and angular transverse shift of reflected and transmitted light beams,” Opt. Commun. 282, 1247-1251 (2009). [CrossRef]
  7. K. Bliokh, “Geometrodynamics of polarized light: Berry phase, spin Hall effect in gradient-index medium,” J. Opt. A, Pure Appl. Opt. 11, 094009-094023 (2009). [CrossRef]
  8. T. Fadeyeva, A. Rubass, Yu. Egorov, A. Volyar, and G. Swartzlander, “Quadrefringence of optical vortices in a uniaxial crystal,” J. Opt. Soc. Am. A 25, 1634-1641 (2008). [CrossRef]
  9. T. A. Fadeyeva, A. F. Rubass, and A. V. Volyar, “Transverse shift of a high-order paraxial vortex-beam induced by a homogeneous anisotropic medium,” Phys. Rev. A 79, 053815 (2009). [CrossRef]
  10. S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Lasers Photonics Rev. 2, 299-313 (2008). [CrossRef]
  11. K. Dholakia, G. Spalding, and M. MacDonald, “Optical tweezers: the next generation,” Phys. World 15, 31-35 (2002).
  12. L. Allen, S. Barnett, and M. Padgett, Angular Momentum (IOP, 2003). [CrossRef]
  13. A. Ciattoni, G. Cincotti, and C. Palma, “Angular momentum dynamics of a paraxial beam in a uniaxial crystal,” Phys. Rev. E 67, 036618 (2003). [CrossRef]
  14. J. A. Fleck and M. D. Feit, “Beam propagation in uniaxial anisotropic media,” J. Opt. Soc. Am. 73, 920-928 (1983). [CrossRef]
  15. S. R. Seshadri, “Basic elliptical Gaussian wave and beam in a uniaxial crystal,” J. Opt. Soc. Am. A 20, 1818-1826 (2003). [CrossRef]
  16. A. Ciattoni, G. Cincotti, and C. Palma, “Circular polarized beams and vortex generation in uniaxial media,” J. Opt. Soc. Am. A 20, 163-171 (2003). [CrossRef]
  17. G. Cincotti, A. Ciattoni, and G. Palma, “Hermite-Gaussian beams in uniaxilly anisotropic crystals,” IEEE J. Quantum Electron. 37, 517-524 (2001). [CrossRef]
  18. G. Cincotti, A. Ciatoni, and C. Palma, “Laguerre-Gaussian and Bessel-Gaussian beams in uniaxial crystals,” J. Opt. Soc. Am. A 19, 1680-1688 (2002). [CrossRef]
  19. A. Ciatoni, G. Cincotti, and C. Palma, “Ordinary and extraordinary beams characterization in uniaxially anisotropic crystals,” Opt. Commun. 195, 55-61 (2001). [CrossRef]
  20. A. Ciatoni and C. Palma, “Anisotropic beam spreading in uniaxial crystals,” Opt. Commun. 231, 79-92 (2004). [CrossRef]
  21. A. Volyar and T. Fadeyeva, “Laguerre-Gaussian beams with complex and real arguments in uniaxial crystals,” Opt. Spectrosc. 101, 297-304 (2006). [CrossRef]
  22. A. Volyar and T. Fadeyeva, “Generation of singular beams in uniaxial crystals,” Opt. Spectrosc. 94, 264-274 (2003). [CrossRef]
  23. Yu. Egorov, T. Fadeyeva, and A. Volyar, “The fine structure of singular beams in crystals: colours and polarization,” J. Opt. A, Pure Appl. Opt. 6, S217-S228 (2004). [CrossRef]
  24. F. Flossman, U. T. Schwarz, M. Maier, and M. R. Dennis, “Polarization singularities from unfolding an optical vortex through a birefringent crystal,” Phys. Rev. Lett. 95, 253901 (2005). [CrossRef]
  25. F. Flossman, U. T. Schwarz, M. Maier, and M. R. Dennis, “Stokes parameters in the unfolding of an optical vortex through a birefringent crystal,” Opt. Express 14, 11402-11411 (2006). [CrossRef]
  26. T. A. Fadeyeva, A. F. Rubass, and A. V. Volyar, “The matrix model of the vortex-beam quadrefringence in a uniaxial crystal,” Ukr. J. Phys. Opt. 10, 109-123 (2009), http://www.ifo.lviv.ua/journal/2009/2009_3_10_01.html. [CrossRef]
  27. E. Brasselet, Ya. Izdebskaya, V. Shvedov, A. Desyatnikov, W. Krolikowski, and Yu. Kivshar, “Dynamics of optical spin-orbit coupling in crystals,” Opt. Lett. 34, 1021-1023 (2009). [CrossRef] [PubMed]
  28. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  29. A. E. Siegman, Lasers (University Science Books, 1986).
  30. E. Zauderer, “Complex argument Hermite-Gaussian and Laguerre-Gaussian beams,” J. Opt. Soc. Am. A 3, 465-469 (1986). [CrossRef]
  31. A. E. Siegman, “Hermite-Gaussian functions of complex argument as optical-beam eigenfunctions,” J. Opt. Soc. Am. 63, 1093-1094 (1973). [CrossRef]
  32. S. Y. Shin and L. B. Felsen, “Gaussian beam modes by multipoles with complex source points,” J. Opt. Soc. Am. 67, 699-700 (1977). [CrossRef]
  33. D. Deng, “Propagation of elegant Hermite cosine Gaussian laser beams,” Opt. Commun. 259, 409-414 (2006). [CrossRef]
  34. E. G. Abramochkin and V. G. Volostnikov, “Generalized Gaussian beams,” J. Opt. A, Pure Appl. Opt. 6, S157-S161 (2004). [CrossRef]
  35. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Special Functions (Nauka, 1983).
  36. M. V. Berry, “Paraxial beams of spinning light,” Proc. SPIE 3487, 6-11 (1998). [CrossRef]
  37. J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “The production of multiringed Laguerre-Gaussian modes by computer-generated hologram,” J. Mod. Opt. 45, 1231-1237 (1998). [CrossRef]
  38. S. A. Kennedy, M. J. Szabo, H. Teslow, J. Z. Porterfield, and E. Abraham, “Creation of Laguerre-Gaussian laser modes using diffractive optics,” Phys. Rev. A 66, 043801 (2002). [CrossRef]
  39. M. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, “Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A 25, 1642-1651 (2008). [CrossRef]
  40. D. McGoloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15-28 (2005). [CrossRef]
  41. F. Gori, G. Gauttari, and C. Padovani, “Bessel-Gaussian beams,” Opt. Commun. 64, 491-495 (1987). [CrossRef]
  42. A. P. Kiselev, “The localized light waves: paraxial and exact solution to the wave equation,” Opt. Spectrosc. 102, 697-717 (2007). [CrossRef]
  43. M. Parras, R. Barghi, and M. Santarsiero, “Relationship between elegant Laguerre-Gauss and Bessel-Gauss beams,” J. Opt. Soc. Am. A 18, 177-184 (2001). [CrossRef]
  44. T. A. Fadeyeva, A. F. Rubass, B. V. Sokolenko, and A. V. Volyar, “The vortex-beam 'precession' in a rotating uniaxial crystal,” J. Opt. A, Pure Appl. Opt. 11, 094008 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited