OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 3 — Mar. 1, 2010
  • pp: 390–398

Apertured paraxial Bessel beams

Yusuf Z. Umul  »View Author Affiliations


JOSA A, Vol. 27, Issue 3, pp. 390-398 (2010)
http://dx.doi.org/10.1364/JOSAA.27.000390


View Full Text Article

Enhanced HTML    Acrobat PDF (801 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The paraxial Bessel beam is obtained by applying an approximation in the wavenumbers. The scattering of the beams by a circular aperture in an absorbing screen is investigated. The scattered fields are expressed in terms of the Fresnel integrals by evaluating the Kirchhoff diffraction integral in the paraxial approximation. The results are examined numerically.

© 2010 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1960) Diffraction and gratings : Diffraction theory
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(260.0260) Physical optics : Physical optics
(260.1960) Physical optics : Diffraction theory

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: October 6, 2009
Revised Manuscript: December 25, 2009
Manuscript Accepted: December 26, 2009
Published: February 9, 2010

Citation
Yusuf Z. Umul, "Apertured paraxial Bessel beams," J. Opt. Soc. Am. A 27, 390-398 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-3-390


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651-654 (1987). [CrossRef]
  2. J. Durnin, J. J. Miceli Jr., and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499-1501 (1987). [CrossRef] [PubMed]
  3. D. McGloin and K. Dholakia, “Bessel beams: Diffraction in a new light,” Contemp. Phys. 46, 15-28 (2005). [CrossRef]
  4. Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151, 207-211 (1998). [CrossRef]
  5. S. H. Tao and X. Yuan, “Self-reconstruction property of fractional Bessel beams,” J. Opt. Soc. Am. A 21, 1192-1197 (2004). [CrossRef]
  6. M. Anguiano-Morales, M. M. Méndez-Otero, M. D. Iturbe-Castillo and S. Chavez-Cerda, “Conical dynamics of Bessel beams,” Opt. Eng. 46, 078001 (2007). [CrossRef]
  7. J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959-3962 (1988). [CrossRef] [PubMed]
  8. Y. Lin, W. Seka, J. H. Eberly, H. Huang, and D. L. Brown, “Experimental investigation of Bessel beam characteristics,” Appl. Opt. 31, 2708-2713 (1992). [CrossRef] [PubMed]
  9. P. Muys and E. Vandamme, “Direct generation of Bessel beams,” Appl. Opt. 41, 6375-6379 (2002). [CrossRef] [PubMed]
  10. J. Durnin, J. J. Miceli Jr., and J. H. Eberly, “Comparison of Bessel and Gaussian beams,” Opt. Lett. 13, 79-80 (1988). [CrossRef] [PubMed]
  11. P. L. Overfelt and C. S. Kenney, “Comparison of the propagation characteristics of Bessel, Bessel-Gauss and Gaussian beams diffracted by a circular aperture,” J. Opt. Soc. Am. A 8, 732-745 (1991). [CrossRef]
  12. Z. Jiang, Q. Lu, and Z. Liu, “Propagation of apertured Bessel beams,” Appl. Opt. 34, 7183-7185 (1995). [CrossRef] [PubMed]
  13. R. Borghi, M. Santarsiero, and F. Gori, “Axial intensity of apertured Bessel beams,” J. Opt. Soc. Am. A 14, 23-26 (1997). [CrossRef]
  14. D. Ding and X. Liu, “Approximate description for Bessel, Bessel-Gauss and Gaussian beams with finite aperture,” J. Opt. Soc. Am. A 16, 1286-1293 (1999). [CrossRef]
  15. R. Piestun, Y. Y. Schechner, and J. Shamir, “Propagation-invariant wave fields with finite energy,” J. Opt. Soc. Am. A 17, 294-303 (2000). [CrossRef]
  16. G. A. Deschamps, “Gaussian beam as a bundle of complex rays,” Electron. Lett. 7, 684-685 (1971). [CrossRef]
  17. Y. Z. Umul, “Modified theory of physical optics,” Opt. Express 12, 4959-4972 (2004). [CrossRef] [PubMed]
  18. Y. Z. Umul, “Modified diffraction theory of Kirchhoff,” J. Opt. Soc. Am. A 25, 1850-1860 (2008). [CrossRef]
  19. Y. Z. Umul, “Improved equivalent source theory,” J. Opt. Soc. Am. A 26, 1799-1805 (2009). [CrossRef]
  20. Y. Z. Umul, “General formulation of the edge-diffracted paraxial waves,” Opt. Laser Technol. 41, 778-782 (2009). [CrossRef]
  21. Y. Z. Umul, “Scattering of a line source by a cylindrical parabolic impedance surface,” J. Opt. Soc. Am. A 25, 1652-1659 (2008). [CrossRef]
  22. Y. Z. Umul, “Uniform theory for the diffraction of evanescent plane waves,” J. Opt. Soc. Am. A 24, 2426-2430 (2007). [CrossRef]
  23. J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Am. 52, 116-130 (1962). [CrossRef] [PubMed]
  24. R. G. Kouyoumjian and P. H. Pathak, “A uniform geometrical theory of diffraction for an edge in a perfectly conducting screen,” Proc. IEEE 62, 1448-1461 (1974). [CrossRef]
  25. Y. Z. Umul, “Modified theory of physical optics solution of the impedance half plane problem,” IEEE Trans. Antennas Propag. 54, 2048-2053 (2006). [CrossRef]
  26. T. Young, “The Bakerian lecture: On the theory of light and colors,” Philos. Trans. R. Soc. London, Ser. A 92, 12-48 (1802). [CrossRef]
  27. A. Rubinowicz, “Thomas Young and the theory of diffraction,” Nature (London) 180, 160-162 (1957). [CrossRef]
  28. Y. Z. Umul, “Alternative interpretation of the edge-diffraction phenomenon,” J. Opt. Soc. Am. A 25, 582-587 (2008). [CrossRef]
  29. M. Moshinsky, “Diffraction in time,” Phys. Rev. 88, 625-631 (1952). [CrossRef]
  30. M. Moshinsky, “Diffraction in time and the time-energy uncertainty relation,” Am. J. Phys. 44, 1037-1042 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited