OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 3 — Mar. 1, 2010
  • pp: 563–571

Super Lorentz–Gauss modes and their paraxial propagation properties

Guoquan Zhou  »View Author Affiliations

JOSA A, Vol. 27, Issue 3, pp. 563-571 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (605 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An orthonormal family of super Lorentz–Gauss (SLG) modes is proposed to describe the highly divergent higher-order modes. The first-order and the second-order SLG modes SLG 01 and SLG 11 are illustrated as examples. Analytical propagation formulas of the SLG 01 and SLG 11 modes through a paraxial A B C D optical system are derived, and analytical beam propagation factors of the SLG 01 and SLG 11 modes are presented. The paraxial propagation properties of the SLG 01 and SLG 11 modes in free space are also compared with those of the corresponding Hermite–Gaussian (HG) HG 01 and HG 11 modes, respectively. This research indicates that SLG modes are more appropriate than HG modes to describe the highly divergent higher-order modes.

© 2010 Optical Society of America

OCIS Codes
(350.5500) Other areas of optics : Propagation
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 26, 2009
Revised Manuscript: December 10, 2009
Manuscript Accepted: December 11, 2009
Published: February 25, 2010

Guoquan Zhou, "Super Lorentz-Gauss modes and their paraxial propagation properties," J. Opt. Soc. Am. A 27, 563-571 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Naqwi and F. Durst, “Focus of diode laser beams: a simple mathematical model,” Appl. Opt. 29, 1780-1785 (1990). [CrossRef] [PubMed]
  2. W. P. Dumke, “The angular beam divergence in double-heterojunction lasers with very thin active regions,” J. Quantum Electron. 11, 400-402 (1975). [CrossRef]
  3. O. E. Gawhary and S. Severini, “Lorentz beams and symmetry properties in paraxial optics,” J. Opt. A, Pure Appl. Opt. 8, 409-414 (2006). [CrossRef]
  4. G. Zhou, J. Zheng, and Y. Xu, “Investigation in the far field characteristics of Lorentz beam from the vectorial structure,” J. Mod. Opt. 55, 993-1002 (2008). [CrossRef]
  5. G. Zhou, “Analytical vectorial structure of a Lorentz-Gauss beam in the far field,” Appl. Phys. B 93, 891-899 (2008). [CrossRef]
  6. G. Zhou, “Nonparaxial propagation of a Lorentz-Gauss beam,” J. Opt. Soc. Am. B 26, 141-147 (2009). [CrossRef]
  7. G. Zhou, “Propagation of vectorial Lorentz beam beyond the paraxial approximation,” J. Mod. Opt. 55, 3571-3577 (2008). [CrossRef]
  8. G. Zhou, “Fractional Fourier transform of Lorentz-Gauss beams,” J. Opt. Soc. Am. A 26, 350-355 (2009). [CrossRef]
  9. G. Zhou, “Focal shift of focused truncated Lorentz-Gauss beam,” J. Opt. Soc. Am. A 25, 2594-2599 (2008). [CrossRef]
  10. O. E. Gawhary and S. Severini, “Lorentz beams as a basis for a new class of rectangular symmetric optical fields,” Opt. Commun. 269, 274-284 (2007). [CrossRef]
  11. G. Zhou, “The beam propagation factors and the kurtosis parameters of a Lorentz beam,” Opt. Laser Technol. 41, 953-955 (2009). [CrossRef]
  12. G. Zhou, “Beam propagation factors of a Lorentz-Gauss beam,” Appl. Phys. B 96, 149-153 (2009). [CrossRef]
  13. M. A. Bandres and J. C. Gutiérrez-Vega, “Ince-Gaussian beams,” Opt. Lett. 29, 144-146 (2004). [CrossRef] [PubMed]
  14. U. T. Schwarz, M. A. Bandres, and J. C. Gutiérrez-Vega, “Observation of Ince-Gaussian modes in stable resonators,” Opt. Lett. 29, 1870-1872 (2004). [CrossRef] [PubMed]
  15. G. Rodríguez-Morales and S. Chávez-Cerda, “Exact nonparaxial beams of the scalar Helmholtz equation,” Opt. Lett. 29, 430-432 (2004). [CrossRef] [PubMed]
  16. N. J. Moore and M. A. Alonso, “Bases for the description of monochromatic, strongly focused, scalar fields,” J. Opt. Soc. Am. A 26, 1754-1761 (2009). [CrossRef]
  17. A. Erdelyi, W. Magnus, and F. Oberhettinger, Tables of Integrals and Transforms (McGraw-Hill, 1954).
  18. Y. Cai, X. Lu, and Q. Lin, “Hollow Gaussian beams and their propagation properties,” Opt. Lett. 28, 1084-1086 (2003). [CrossRef] [PubMed]
  19. J. Gu and D. Zhao, “Propagation characteristics of Gaussian beams through a paraxial ABCD optical system with an annular aperture,” J. Mod. Opt. 52, 1065-1072 (2005). [CrossRef]
  20. Y. Cai, “Model for an anomalous hollow beam and its paraxial propagation,” Opt. Lett. 32, 3179-3181 (2007). [CrossRef] [PubMed]
  21. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, 1980).
  22. R. Martínez-Herrero and P. M. Mejías, “Second-order spatial characterization of hard-edged diffracted beams,” Opt. Lett. 18, 1669-1671 (1993). [CrossRef] [PubMed]
  23. R. Martínez-Herrero, P. M. Mejías, and M. Arias, “Parametric characterization of coherent, lowest-order Gaussian beams propagating through hard-edged apertures,” Opt. Lett. 20, 124-126 (1995). [CrossRef] [PubMed]
  24. Z. Mei and D. Zhao, “Approximate method for the generalized M2 factor of rotationally symmetric hard-edge diffracted flattened Gaussian beams,” Appl. Opt. 44, 1381-1386 (2005). [CrossRef] [PubMed]
  25. D. Deng, “Generalized M2-factor of hollow Gaussian beams through a hard-edge circular aperture,” Phys. Lett. A 341, 352-356 (2005). [CrossRef]
  26. G. Nemes and J. Serna, “Laser beam characterization with use of second-order moments: an overview,” in DPSS Lasers: Applications and Issues, M.W.Dowley, ed., Vol.17 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1998), pp. 200-207.
  27. B. Lü and H. Ma, “Beam propagation factor of decentred Gaussian and cosine-Gaussian beams,” J. Mod. Opt. 47, 719-723 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited