OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 3 — Mar. 1, 2010
  • pp: 622–631

Discontinuity-free edge-diffraction model for characterization of focused wave fields

Andrey G. Sedukhin  »View Author Affiliations

JOSA A, Vol. 27, Issue 3, pp. 622-631 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (974 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A model of discontinuity-free edge diffraction is proposed that is valid in the framework of the scalar Debye approximation and describes the formation process and approximate structure of the stationary diffracted field of a monochromatic converging spherical wave of limited angular opening throughout the whole space about the focus. The field is represented semianalytically in terms of the sum of a direct quasi-spherical wave and two edge quasi-conical waves of the zeroth and first order. The angular spectrum amplitudes of all these waves have smooth continuous variations of the real and imaginary parts in polar angle and radius, the separable nonanalytic functions defining the polar-angle variations of the amplitudes being found by optimization techniques.

© 2010 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(050.1220) Diffraction and gratings : Apertures
(050.1960) Diffraction and gratings : Diffraction theory
(260.1960) Physical optics : Diffraction theory

ToC Category:
Physical Optics

Original Manuscript: November 5, 2009
Revised Manuscript: January 16, 2010
Manuscript Accepted: January 17, 2010
Published: February 26, 2010

Andrey G. Sedukhin, "Discontinuity-free edge-diffraction model for characterization of focused wave fields," J. Opt. Soc. Am. A 27, 622-631 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed.(Cambridge Univ. Press, 1999), Sect. 8.
  2. T. Young, “On the theory of light and colours,” Philos. Trans. R. Soc. London 92, 12-48 (1802). [CrossRef]
  3. P. Debye, “Das verhalten von lichtwellen in der nahe eines brennpuktes oder iener brennlinie,” Ann. Phys. 30, 755-776 (1909). [CrossRef]
  4. W. H. Carter, “Band-limited angular-spectrum approximation to a spherical scalar wave field,” J. Opt. Soc. Am. 65, 1054-1058 (1975). [CrossRef]
  5. H. Weyl, “Ausbreitung elektromagnetischer wellen über einem ebenen leiter,” Ann. Phys. 60, 481-500 (1919). [CrossRef]
  6. G. A. Maggi, “Sulla propagazione libera e perturbata delle onde luminose in un mezzo isotropo,” Ann. Matem. 16, 21-48 (1888). [CrossRef]
  7. A. Rubinowicz, “Die beugungswelle in der Kirchhoffschen theorie der beugungserscheinungen,” Ann. Phys. 53, 257-278 (1917). [CrossRef]
  8. A. Sommerfeld, “Mathematische theorie der diffraction,” Math. Ann. 47, 317-374 (1896). [CrossRef]
  9. J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Am. 52, 116-130 (1962). [CrossRef] [PubMed]
  10. K. Miyamoto and E. Wolf, “Generalization of the Maggi-Rubinowicz theory of the boundary diffraction wave—Part I,” J. Opt. Soc. Am. 52, 615-625 (1962). [CrossRef]
  11. K. Miyamoto and E. Wolf, “Generalization of the Maggi-Rubinowicz theory of the boundary diffraction wave—Part lI,” J. Opt. Soc. Am. 52, 626-637 (1962). [CrossRef]
  12. S. Ganci, “An experiment on the physical reality of edge-diffracted waves,” Am. J. Phys. 57, 370-373 (1989). [CrossRef]
  13. R. Kumar, “Structure of boundary diffraction wave revisited,” Appl. Phys. B 90, 379-382 (2008). [CrossRef]
  14. A. I. Khizhnyak, S. P. Anokhov, R. A. Lyramenko, M. S. Soskin, and M. V. Vasnetsov, “Structure of an edge-dislocation wave originating in plane wave diffraction by a half-plane,” J. Opt. Soc. Am. A 17, 2199-2207 (2000). [CrossRef]
  15. Y. Z. Umul, “Alternative interpretation of the edge-diffraction phenomenon,” J. Opt. Soc. Am. A 25, 582-586 (2008). [CrossRef]
  16. G. C. Sherman and W. C. Chew, “Aperture and far-field distributions expressed by the Debye integral representation of focused fields,” J. Opt. Soc. Am. 72, 1076-1083 (1982). [CrossRef]
  17. J. J. Stamnes, “Waves, rays, and the method of stationary phase,” Opt. Express 10, 740-751 (2002). [PubMed]
  18. W. Wang, A. T. Friberg, and E. Wolf, “Structure of focused fields in systems with large Fresnel numbers,” J. Opt. Soc. Am. A 12, 1947-1953 (1995). [CrossRef]
  19. E. Wolf and Y. Li, “Conditions for the validity of the Debye integral representation of focused fields,” Opt. Commun. 39, 205-209 (1981). [CrossRef]
  20. A. Papoulis, Systems and Transforms with Applications in Optics, 1st ed. (McGraw-Hill, 1968), Chap. 7.
  21. A. G. Sedukhin, “Marginal phase correction of truncated Bessel beams,” J. Opt. Soc. Am. A 17, 1059-1066 (2000). [CrossRef]
  22. A. G. Sedukhin, “Refinement of a discontinuity-free edge-diffraction model describing focused wave fields,” J. Opt. Soc. Am. A 26, 632-636 (2010). [CrossRef]
  23. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358-379 (1959). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited