Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Refinement of a discontinuity-free edge-diffraction model describing focused wave fields

Not Accessible

Your library or personal account may give you access

Abstract

Two equivalent forms of a refined discontinuity-free edge-diffraction model describing the structure of a stationary focused wave field are presented that are valid in the framework of the scalar Debye integral representation for a diffracted rotationally symmetric converging spherical wave of a limited yet not-too-low angular opening. The first form describes the field as the sum of a direct quasi-spherical wave and a plurality of edge quasi-conical waves of different orders, the optimum discontinuity-free angular spectrum functions of all the waves being dependent on the polar angle only. According to the second form, the focused field is fully characterized by only three components—the same quasi-spherical wave and two edge quasi-conical waves of the zero and first order, of which the optimum discontinuity-free angular spectrum functions are dependent on both the polar angle and the polar radius counted from the geometrical focus.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Discontinuity-free edge-diffraction model for characterization of focused wave fields

Andrey G. Sedukhin
J. Opt. Soc. Am. A 27(3) 622-631 (2010)

Uniform boundary diffraction wave theory of Rubinowicz

Yusuf Z. Umul
J. Opt. Soc. Am. A 27(7) 1613-1619 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved