OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 27, Iss. 4 — Apr. 1, 2010
  • pp: 687–695

Scattering by dielectric circular cylinders in a dielectric slab

Fabrizio Frezza, Lara Pajewski, Cristina Ponti, and Giuseppe Schettini  »View Author Affiliations

JOSA A, Vol. 27, Issue 4, pp. 687-695 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (657 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An analytical-numerical technique for the solution of the plane-wave scattering problem by a set of dielectric cylinders embedded in a dielectric slab is presented. Scattered fields are expressed by means of expansions into cylindrical functions, and the concept of plane-wave spectrum of a cylindrical function is employed to define reflection and transmission through the planar interfaces. Multiple reflection phenomena due to the presence of a layered geometry are taken into account. Solutions can be obtained for both TM and TE polarizations and for near- and far-field regions. The numerical approach is described and the method is validated by comparison with examples given in the literature, with very good agreement. Results are presented for the scattering by a finite grid of three cylinders embedded in a slab.

© 2010 Optical Society of America

OCIS Codes
(290.4210) Scattering : Multiple scattering
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:

Original Manuscript: August 3, 2009
Revised Manuscript: November 2, 2009
Manuscript Accepted: November 5, 2009
Published: March 12, 2010

Fabrizio Frezza, Lara Pajewski, Cristina Ponti, and Giuseppe Schettini, "Scattering by dielectric circular cylinders in a dielectric slab," J. Opt. Soc. Am. A 27, 687-695 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Daniels, Surface Penetrating Radar, 2nd ed. (IEE, 2004). [CrossRef]
  2. M. A. Taubenblatt, “Light scattering from cylindrical structures on surfaces,” Opt. Lett. 15, 255-257 (1990). [CrossRef] [PubMed]
  3. R. Borghi, M. Santarsiero, F. Frezza, and G. Schettini, “Plane-wave scattering by a dielectric circular cylinder parallel to a general reflecting flat surface,” J. Opt. Soc. Am. A 14, 1500-1504 (1997). [CrossRef]
  4. D. E. Lawrence and K. Sarabandi, “Electromagnetic scattering from a dielectric cylinder buried beneath a slightly rough surface,” IEEE Trans. Antennas Propag. 50, 1368-1376 (2002). [CrossRef]
  5. M. Di Vico, F. Frezza, L. Pajewski, and G. Schettini, “Scattering by a finite set of perfectly conducting cylinders buried in a dielectric half-space: a spectral-domain solution,” Radio Sci. 40, 11 (2005).
  6. F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Electromagnetic scattering by perfectly-conducting cylinders buried in a dielectric slab through the cylindrical wave approach,” IEEE Trans. Antennas Propag. 57, 1208-1217 (2009). [CrossRef]
  7. N. P. Zhuck and A. G. Yarovoy, “Two-dimensional scattering from an inhomogeneous dielectric cylinder embedded in a stratified medium: case of TM polarization,” IEEE Trans. Antennas Propag. 42, 16-21 (1994). [CrossRef]
  8. S. C. Lee, “Light scattering by closely spaced parallel cylinders embedded in a finite dielectric slab,” J. Opt. Soc. Am. A 16, 1350-1361 (1999). [CrossRef]
  9. Q. A. Naqvi and A. A. Rizvi, “Low contrast circular cylinder buried in a grounded dielectric layer,” J. Electromagn. Waves Appl. 12, 1527-1536 (1998). [CrossRef]
  10. C. H. Kuo and M. Moghaddam, “Electromagnetic scattering from a buried cylinder in layered media with rough interfaces,” IEEE Trans. Antennas Propag. 54, 2392-2401 (2006). [CrossRef]
  11. M. Di Vico, F. Frezza, L. Pajewski, and G. Schettini, “Scattering by buried dielectric cylindrical structures,” Radio Sci. 40, RS6S18 (2005). [CrossRef]
  12. G. Cincotti, F. Gori, M. Santarsiero, F. Frezza, F. Furnò, and G. Schettini, “Plane wave expansion of cylindrical functions,” Opt. Commun. 95, 192-198 (1993). [CrossRef]
  13. R. Borghi, F. Frezza, M. Santarsiero, C. Santini, and G. Schettini, “Numerical study of the reflection of cylindrical waves of arbitrary order by a generic planar interface,” J. Electromagn. Waves Appl. 13, 27-50 (1999). [CrossRef]
  14. R. Borghi, F. Frezza, M. Santarsiero, C. Santini, and G. Schettini, “A quadrature algorithm for the evaluation of a 2D radiation integral with highly oscillating kernel,” J. Electromagn. Waves Appl. 14, 1353-1370 (2000). [CrossRef]
  15. I. N. Sneddon, Mixed Boundary Value Problems in Potential Theory (North-Holland, 1966).
  16. A. Z. Elsherbeni, “A comparative study of two-dimensional multiple scattering techniques,” Radio Sci. 29, 1023-1033 (1994). [CrossRef]
  17. W. H. Press, S. A. Teukolski, V. T. Vetterling, B. P. Flannery, and M. Metcalf, Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. (Cambridge Univ. Press, 1992).
  18. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 2nd ed. (Dover, 1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited