OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 4 — Apr. 1, 2010
  • pp: 757–765

Prospects of Wannier functions in investigating photonic crystal all-optical devices for signal processing

M. S. Muradoglu, A. R. Baghai-Wadji, and T. W. Ng  »View Author Affiliations


JOSA A, Vol. 27, Issue 4, pp. 757-765 (2010)
http://dx.doi.org/10.1364/JOSAA.27.000757


View Full Text Article

Enhanced HTML    Acrobat PDF (722 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Wannier functions derived from Bloch functions have been identified as an efficient means of analyzing the properties of photonic crystals in which localized functions have now opened the door for 2D and 3D structures containing defects to be investigated. In this paper, based on the Maxwell equations in diagonalized form and utilizing Bloch waves we have obtained an equivalent system of algebraic equations in eigenform. By establishing and exploiting several distinct properties of the resulting eigenpairs, we demonstrate an ability to construct Wannier functions associated with the simplest one-dimensional photonic structure. More importantly, the numerical investigation of the inner- and intra-band orthonormality conditions as well as Hilbert space partitioning features shows a capability for multi-resolution analysis that will make all-optical signal processing devices with photonic crystal structures feasible.

© 2010 Optical Society of America

OCIS Codes
(250.5300) Optoelectronics : Photonic integrated circuits
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: December 4, 2009
Revised Manuscript: January 24, 2010
Manuscript Accepted: January 28, 2010
Published: March 18, 2010

Citation
M. S. Muradoglu, A. R. Baghai-Wadji, and T. W. Ng, "Prospects of Wannier functions in investigating photonic crystal all-optical devices for signal processing," J. Opt. Soc. Am. A 27, 757-765 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-4-757


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787-3790 (1996). [CrossRef] [PubMed]
  2. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  3. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2002). [CrossRef]
  4. A. Taflove, “Review of the formulation and applications of the finite-differences time-domain method for numerical modeling of electromagnetic-wave interactions with arbitrary surfaces,” Wave Motion 10, 547-582 (1988). [CrossRef]
  5. C. A. J. Fletcher, Computational Galerkin Methods (Springer, 1984).
  6. A. Algappan, X. W. Sun, and M. B. Yu, “Equal-frequency surface analysis of two-dimensional photonic crystals,” J. Opt. Soc. Am. A 25, 219-224 (2008). [CrossRef]
  7. M. Che and Z.-Y. Li, “Analysis of surface modes in photonic crystals by plane-wave transfer-matrix method,” J. Opt. Soc. Am. A 25, 2177-2184 (2008). [CrossRef]
  8. V. R. Shteeman, I. Nusinsky, E. Kapon, and A. A. Hardy, “Analysis of photonic crystals with defects using coupled theory,” J. Opt. Soc. Am. A 26, 1248-1255 (2009). [CrossRef]
  9. G. H. Wannier, “The structure of electronic excitation levels in insulating crystals,” Phys. Rev. 52, 191-197 (1937). [CrossRef]
  10. K. M. Leung, “Defect modes in photonic band structures: a Green's function approach using vector Wannier functions,” J. Opt. Soc. Am. B 10, 303-306 (1993). [CrossRef]
  11. N. Marzari and D. Vanderbilt, “Maximally localized generalized Wannier functions for composite energy bands,” Phys. Rev. B 56, 12847-12865 (1997). [CrossRef]
  12. K. Busch, S. F. Mingaleev, A. Garcia-Martin, M. Schillinger, and D. Hermann, “Wannier function approach to photonic crystal circuits,” J. Phys. Condens. Matter 15, R1233-R1256 (2003). [CrossRef]
  13. A. R. Baghai-Wadji, “A symbolic procedure for the diagonalization of linear PDEs in accelerated computational engineering,” in Symbolic and Numerical Scientific Computing (Springer-Verlag, 2003), pp. 347-360. [CrossRef]
  14. W. Kohn, “Analytical properties of Bloch waves and Wannier functions,” Phys. Rev. 115, 809-821 (1959). [CrossRef]
  15. A. Kloeckner, “On the computation of maximally localized Wannier functions” (Diplomarbeit, 2004);http://mathema.tician.de/dl/academic/da.
  16. A. R. Baghai-Wadji and M. Muradoglu, “On the nature of eigenpairs associated with wave propagation problems in photonic structures,” in Proceedings of the 12th International Symposium on Integrated Circuits (ISIC), Singapore, 16 Dec. 2009 (IEEE Xplore 2009).
  17. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton Univ., 2008).
  18. S. Mallat, Wavelet Tour of Signal Processing (Academic, 1998).
  19. I. Daubechies, Ten Lectures on Wavelets (SIAM, 1992). [CrossRef]
  20. K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967-970 (1999). [CrossRef]
  21. W. Park and J. B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett. 85, 4845 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Supplementary Material


» Media 1: MOV (269 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited