OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 4 — Apr. 1, 2010
  • pp: 781–796

Application of Riesz transforms to the isotropic AM–PM decomposition of geometrical-optical illusion images

Vicente Sierra-Vázquez and Ignacio Serrano-Pedraza  »View Author Affiliations


JOSA A, Vol. 27, Issue 4, pp. 781-796 (2010)
http://dx.doi.org/10.1364/JOSAA.27.000781


View Full Text Article

Enhanced HTML    Acrobat PDF (958 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The existence of a special second-order mechanism in the human visual system, able to demodulate the envelope of visual stimuli, suggests that spatial information contained in the image envelope may be perceptually relevant. The Riesz transform, a natural isotropic extension of the Hilbert transform to multidimensional signals, was used here to demodulate band-pass filtered images of well-known visual illusions of length, size, direction, and shape. We show that the local amplitude of the monogenic signal or envelope of each illusion image conveys second-order information related to image holistic spatial structure, whereas the local phase component conveys information about the spatial features. Further low-pass filtering of the illusion image envelopes creates physical distortions that correspond to the subjective distortions perceived in the illusory images. Therefore the envelope seems to be the image component that physically carries the spatial information about these illusions. This result contradicts the popular belief that the relevant spatial information to perceive geometrical-optical illusions is conveyed only by the lower spatial frequencies present in their Fourier spectrum.

© 2010 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(330.5020) Vision, color, and visual optics : Perception psychology
(330.6110) Vision, color, and visual optics : Spatial filtering

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: June 11, 2009
Revised Manuscript: December 11, 2009
Manuscript Accepted: January 15, 2010
Published: March 22, 2010

Virtual Issues
Vol. 5, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Vicente Sierra-Vázquez and Ignacio Serrano-Pedraza, "Application of Riesz transforms to the isotropic AM-PM decomposition of geometrical-optical illusion images," J. Opt. Soc. Am. A 27, 781-796 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-4-781


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. G. Boring, Sensation and Perception in the History of Experimental Psychology (Appleton-Century-Crofts, 1942).
  2. J. O. Robinson, The Psychology of Visual Illusion (Hutchinson U. Library, 1972).
  3. S. Coren and J. S. Girgus, Seeing Is Deceiving. The Psychology of Visual Illusions (Lawrence Erlbaum, 1978).
  4. F. C. Müller-Lyer, “Optische Urtheilstäuschungen,” Archiv. Anat. Phys., Phys. Abthlg. Suppl. 2, 263-270 (1889).
  5. F. C. Müller-Lyer, “Zur Lehre von den optischen Täuschungen. Über Kontrast und Konfluxion,” Z. Psychol. 9, 1-16 (1896).
  6. F. Brentano, “Über ein optisches Paradoxon,” Z. Psychol. 3, 349-358 (1892).
  7. M. Ponzo, “Urteilstäuschungen über Mengen,” Arch. Ges. Psychol. 65, 129-162 (1928).
  8. J. L. R. Delboeuf, “Sur une nouvelle illusion d'optique,” Bull. Acad. Roy. Belg. 24, 545-558 (1892).
  9. F. Zöllner, “Über eine neue Art von Pseudoskopie und ihre Beziehungen zu den von Plateau und Oppel beschriebenen Bewegungsphäenomenen,” Ann. Phys. 186, 500-525 (1860).
  10. Robinson quotes that Hering's illusion appeared in E. Hering, Beitrage zur Psychology Vol. 1 (Engelman, Leipzig, 1891). Unfortunately, we could not obtain the original source.
  11. W. Ehrenstein, “Versuche über die Beziehungen zwischen Bewegungs- und Gestaltwahrnehmung,” Z. Psychol. 95, 305-352 (1925).
  12. W. James, The Principles of Psychology, Vol. I (Harvard U. Press, 1981).
  13. A. P. Ginsburg, Visual Information Processing Based on Spatial Filters Constrained by Biological Data. Tech. Rep. AMRL-TR-78-129 (Aerospace Medical Research Laboratory, Wright Patterson Air Force Base, Dayton, Ohio, USA, 1978).
  14. I. Rock, “The description and analysis of object and event perception,” in Handbook of Perception and Human Performance. Vol. II, K.R.Boff, L.Kaufman, and J.P.Thomas, eds. (Wiley, 1986), Chap. 33.
  15. R. Gregory, Eye and Brain. The Psychology of Seeing, 4th ed. (Oxford U. Press, 1994).
  16. A. P. Ginsburg, “Spatial filtering and visual form perception,” in Handbook of Perception and Human Performance. Vol. II, K.R.Boff, L.Kaufman, and J.P.Thomas, eds. (Wiley, 1986), Chap. 34.
  17. S. Coren and J. S. Girgus, “Visual illusions,” in Handbook of Sensory Physiololgy. Vol. VIII. Perception, R.Held, H.W.Leibowitz, and H.-L.Teuber, eds. (Springer-Verlag, 1978), pp. 551-568.
  18. A. P. Ginsburg and P. W. Evans, “Predicting visual illusions from filtered images based upon biological data,” J. Opt. Soc. Am. 69, 1443 (1979).
  19. M. Carrasco, J. G. Figueroa, and J. D. Willen, “A test of the spatial-frequency explanation of the Müller-Lyer illusion,” Perception 15, 553-562 (1986). [CrossRef] [PubMed]
  20. C. R. Carlson, J. R. Moeller, and C. H. Anderson, “Visual illusions without low spatial frequencies,” Vision Res. 24, 1407-1413 (1984). [CrossRef] [PubMed]
  21. M. A. García-Pérez, “Visual phenomena without low spatial frequencies: a closer look,” Vision Res. 31, 1647-1653 (1991). [CrossRef] [PubMed]
  22. S. Coren, “The influence of optical aberrations on the magnitude of the Poggendorf illusion,” Percept. Psychophys. 6, 185-186 (1969). [CrossRef]
  23. B. C. Skottun, “Amplitude and phase in the Müller-Lyer illusion,” Perception 29, 201-209 (2000). [CrossRef] [PubMed]
  24. J. G. Daugman and C. J. Downing, “Demodulation, predictive coding, and spatial vision,” J. Opt. Soc. Am. A 12, 641-660 (1995). [CrossRef]
  25. J. P. Havlicek, “AM-FM image models,” Ph.D. dissertation (The University of Texas at Austin, 1996).
  26. J. P. Havlicek and A. C. Bovik, “Image modulation models,” in Handbook of Image and Video Processing, A.C.Bovik, ed. (Academic, 2000), pp. 313-324.
  27. A. C. Bovik, N. Gopal, T. Emmoth, and A. Restrepo, “Localized measurement of emergent image frequencies by Gabor wavelets,” IEEE Trans. Inf. Theory 38, 691-712 (1992). [CrossRef]
  28. Y-X. Zhou and C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98-101 (1993). [CrossRef] [PubMed]
  29. I. Mareschal and C. L. Baker, “Cortical processing of second-order motion,” 16, 527-540 (1999).
  30. C. Chubb, L. Olzak, and A. Derrington, “Second-order processes in vision: introduction,” J. Opt. Soc. Am. A 18, 2175-2178 (2001). [CrossRef]
  31. A. P. Johnson and C. L. Baker, “First- and second-order information in natural images: a filter-based approach to image statistics,” J. Opt. Soc. Am. A 21, 913-925 (2004). [CrossRef]
  32. V. Sierra-Vázquez and I. Serrano-Pedraza, “Single-band amplitude demodulation of Müller-Lyer illusion images,” Spanish J. Psychol. 10, 3-19 (2007).
  33. P. Maragos and A. C. Bovik, “Image demodulation using multidimensional energy separation,” J. Opt. Soc. Am. A 12, 1867-1876 (1995). [CrossRef]
  34. J. G. Daugman and C. J. Downing, “Demodulation: a new approach to texture vision,” in Spatial Vision in Human and Robots, L.H.Harris and M.Jenkin, eds. (Cambridge U. Press, 1993), pp. 63-87.
  35. J. R. Bergen and E. H. Adelson, “Early vision and texture perception,” Nature 333, 363-364 (1988). [CrossRef] [PubMed]
  36. C. Chubb and M. S. Landy, “Orthogonal distribution analysis: a new approach to the study of texture perception,” in Computational Models of Visual Processing, M.S.Landy and J.A.Movshon, eds. (MIT Press, 1991), pp. 291-301.
  37. D. Gabor, “Theory of communication,” J. Inst. Electr. Eng. (part III) 93, 429-457 (1946).
  38. R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed. (McGraw-Hill, 1978).
  39. G. H. Grandlund and H. Knutsson, Signal Processing for Computer Vision (Kluwer Academic, 1995).
  40. S. L. Hahn, Hilbert Transform in Signal Processing (Artech House, 1996).
  41. T. Bülow and G. Sommer, “A novel approach to the 2D analytic signal,” in 8th Conference on Computer Analysis of Images and Patterns, Ljubljana, F.Solina and A.Leonardis, eds., LNCS Vol. 1689 (Springer-Verlag, 1999), pp. 25-32. [CrossRef]
  42. M. Felsberg and G. Sommer, “A new extension of linear signal processing for estimating local properties and detecting features,” in 22nd Symposium für Mustererkennung, DAGM, Kiel, G.Sommer, N.Krüger, and C.Perwass, eds. (Springer-Verlag, 2000), pp. 195-202.
  43. A. P. Calderón and A. Zygmund, “On the existence of certain singular integrals,” Acta Math. 88, 85-139 (1952). [CrossRef]
  44. A. P. Calderón and A. Zygmund, “On singular integrals,” Am. J. Math. 78, 289-309 (1956). [CrossRef]
  45. J. Horváth, “Sur les functions conjugées à plusieurs variables,” Indagationes Matematicae 15, 17-29 (1953).
  46. E. M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton U. Press, 1970).
  47. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton U. Press, 1971).
  48. R. Müller and J. Marquard, “Die Hilbertransformation und ihre Verallgemeinerung in Optik und Bildverarbeitung,” Optik (Stuttgart) 110, 99-109 (1999).
  49. T. Bülow, D. Pallek, and G. Sommer, “Riesz transform for the isotropic estimation of the local phase moiré interferograms,” in 22nd DAGM Symposium für Mustererkennung, Kiel (2000), G.Sommer, N.Krüger, and C.Perwass, eds. (Springer-Verlag, 2000), pp. 333-340.
  50. M. Felsberg and G. Sommer, “The monogenic signal,” IEEE Trans. Signal Process. 49, 3136-3144 (2001). [CrossRef]
  51. M. Felsberg, “Low-level image processing with the structure multivector,” Ph.D. thesis, Tech. Rep. #0203 (Institute of Computer Science and Applied Mathematics, Christian-Albrechts Universität, Kiel, Germany, 2002), available at http://www.informatik.uni-kiel.de/reports/2002/0203.html.
  52. M. Felbsberg and G. Sommer, “The monogenic scale-space: A unifying approach to phase-based image processing in scale-space,” J. Math. Imaging Vision 21, 5-26 (2004). [CrossRef]
  53. M. Felsberg and G. Sommer, “The multidimensional isotropic generalization of quadrature filters in geometric algebra,” in Lecture Notes in Computer Science, Vol 1888, G.Sommer and Y.Zeevi, eds. (Springer-Verlag, 2000), pp. 175-185. [CrossRef]
  54. M. Felsberg and G. Sommer, “Structure multivector for local analysis of images,” in Multi-image Analysis, Proceedings of Daugstuhl Workshop on Theoretical Foundations of Computer Vision, LNCS 2032, R.Klette, T.Huang, and G.Gimel'farb, eds. (Springer-Verlag, 2001), pp. 93-104.
  55. M. Felsberg, “Optical flow estimation from monogenic phase,” in Complex Motion, First International Workshop, IWCM 2004, LNCS 34517, B.Jähne, R.Mester, E.Barth, and H.Scharr, eds. (Springer-Verlag, 2007), pp. 1-13.
  56. K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18, 1862-1870 (2001). [CrossRef]
  57. R. San José Estépar, “Local structure tensor for multidimensional signal processing. Applications to medical image analysis,” Ph.D. thesis (Escuela Técnica Superior de Ingenieros de Telecommunicación, Universidad de Valladolid, Valladolid, Spain, 2005). Available athttp://lmi.bwh.harvard.edu/papers/pdfs/2005/san-joseThesis05.pdf.
  58. M. Brady, Advanced Transform Methods (Department of Engineering Science, Oxford University, 2006). Available at http://www.robots.ox.ac.uk/~jmb/transformlectures.html.
  59. In the literature, both the definition of the Hilbert and the Riesz transforms and the computation of their Fourier transforms (or multipliers) create an awkward situation, caused by the selection of the sign of convolution kernel in Eq. and the definition of the direct Fourier transform. This is not a trivial issue because it has consequences for the computation of the true phase of odd symmetries. As the four possibilities exist in the literature, the definition of the j Riesz transform as convolution with the kernel Kj(x)=−cnxj|x|−n−1, j=1,...,n, adopted in Eqs. is consistent with the definition of the Hilbert transform in and accords with the definition adopted by some authors in harmonic analysis , Eq. (4.1), and image processing but differs by a minus sign from those used in harmonic analysis , signal theory , and image processing . This decision also affects the definitions of analytic signal and monogenic signal. If the definition of the direct Fourier transform contains a minus sign in the argument of the complex exponential [i.e., Eq. ], then the FT of the Riesz kernel j is K̂j(ξ)=iξj/|ξ|, j=1,...,n, and it follows from this that K̂1(u)=iu/|u| and K̂2(u)=iv/|u| for a two-dimensional signal.
  60. M. Felsberg, “Disparity from monogenic phase,” in DAGM 2002, LNCS Vol. 2449, L.Van Gool, ed. (Springer-Verlag, Berlin, 2002), pp. 248-256.
  61. D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex,” J. Physiol. (London) 160, 106-154 (1962).
  62. M. C. Morrone and D. C. Burr, “Feature detection in human vision: a phase-dependent energy model,” Proc. R. Soc. London, Ser. B 235, 221-245 (1988). [CrossRef]
  63. M. Felsberg and U. Köthe, “GET: The connection between monogenic scale-space and Gaussian derivatives,” in Scale-Space and PDE Methods in Computer Vision, Proceedings of Scale-Space 2005, LNCS Vol. 3459, R.Kimmel, N.Sochen, J.Weickert, eds. (Springer-Verlag, 2005), pp. 192-203. [CrossRef]
  64. V. Sierra-Vázquez, “Riez transform and the image spatial global structure,” in Proceedings of The First Iberian Conference on Perception (2005), pp. 17-18.
  65. E. B. Goldstein, Sensation and Perception, 2nd ed. (Wadsworth, 1984).
  66. R. Sekuler and R. Blake, Perception, 3rd ed. (McGraw-Hill, 1994). [PubMed]
  67. J. A. Solomon, “Channel selection with non-white-noise mask,” J. Opt. Soc. Am. A 17, 986-993 (2000). [CrossRef]
  68. D. H. Kelly, “Spatial frequency selectivity in the retina,” Vision Res. 15, 665-672 (1975). [CrossRef] [PubMed]
  69. NAG, The NAG FORTRAN Library Manual, Mark 15 (The Numerical Algorithms Group Ltd, Oxford, 1991).
  70. K. G. Larkin, “Uniform estimation of orientation using local and nonlocal 2-D energy operators,” Opt. Express 13, 8097-8121 (2005). [CrossRef] [PubMed]
  71. A. Oliva and A. Torralba, “Modeling the shape of the scene: a holistic representation of the spatial envelope,” Int. J. Comput. Vis. 42, 145-175 (2001). [CrossRef]
  72. G. S. Hesse and M. A. Georgeson, “Edges and bars: where do people see features in 1-D images?” Vision Res. 45, 507-525 (2005). [CrossRef]
  73. A. Papoulis, The Fourier Integral and its Applications (McGraw-Hill, 1962).
  74. A. J. Schofield and M. A. Georgeson, “Sensitivity to contrast modulation: the spatial frequency dependence of second-order vision,” Vision Res. 43, 243-259 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited