OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 4 — Apr. 1, 2010
  • pp: 865–872

Numerical modeling of light propagation in a hexagonal array of dielectric cylinders

Leigh Fischer, Andrei Zvyagin, Taras Plakhotnik, and Misha Vorobyev  »View Author Affiliations


JOSA A, Vol. 27, Issue 4, pp. 865-872 (2010)
http://dx.doi.org/10.1364/JOSAA.27.000865


View Full Text Article

Enhanced HTML    Acrobat PDF (311 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To model the light-guiding properties of a hexagonal array of dielectric cylinders, we have numerically solved Maxwell’s equations with the finite-difference time-domain technique. The sizes and refractive indices of the cylinders are representative of those of the outer segments of the cone photoreceptors in the human central retina. In the array, light propagates predominantly as a “slow” mode, with a noticeable contribution of a “fast” mode, with the optical field localized in the intra- and inter-cylinder spaces, respectively. Interference between these modes leads to substantial (up to approximately 60%) axial oscillations in optical power within the cylinders. Our numerical model offered approximate dependence of the optical intensity distribution within the cylinders on their radii and separations.

© 2010 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(330.4060) Vision, color, and visual optics : Vision modeling

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 8, 2009
Revised Manuscript: December 30, 2009
Manuscript Accepted: February 2, 2010
Published: March 25, 2010

Virtual Issues
Vol. 5, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Leigh Fischer, Andrei Zvyagin, Taras Plakhotnik, and Misha Vorobyev, "Numerical modeling of light propagation in a hexagonal array of dielectric cylinders," J. Opt. Soc. Am. A 27, 865-872 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-4-865


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Enoch, “Waveguide modes: are they present, and what is their possible role in the visual mechanism?” J. Opt. Soc. Am. 50, 1025-1026 (1960). [CrossRef] [PubMed]
  2. A.W.Snyder and R.Menzel, eds., Photoreceptor Optics (Springer-Verlag, 1975). [CrossRef]
  3. J.M.Enoch and F.L.Tobey, Jr., eds., Vertebrate Photoreceptor Optics (Springer-Verlag, 1981).
  4. V. Lakshminarayanan and M. L. Calvo, “Initial field and energy flux in absorbing optical waveguides. II. Implications,” J. Opt. Soc. Am. A 4, 2133-2140 (1987). [CrossRef] [PubMed]
  5. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  6. B. Vohnsen, “Photoreceptor waveguides and effective retinal image quality,” J. Opt. Soc. Am. A 24, 597-607 (2007). [CrossRef]
  7. L. Eyges and P. Wintersteiner, “Modes of an array of dielectric waveguides,” J. Opt. Soc. Am. 71, 1351-1360 (1981).
  8. W. Wijngaard, “Some normal modes of an infinite hexagonal array of identical circular dielectric rods,” J. Opt. Soc. Am. 64, 1136-1144 (1974). [CrossRef] [PubMed]
  9. A. W. Snyder and R. L. Kyhl, “Surface mode propagation along an array of dielectric rods with all elements excited identically,” IEEE Trans. Antennas Propag. AP14, 510-511 (1966). [CrossRef]
  10. R. Vanclooster and P. Phariseau, “Light propagation in fiber bundles,” Physica 49, 493-501 (1970). [CrossRef]
  11. R. Vanclooster and P. Phariseau, “Diffraction of an electromagnetic wave by a fiber bundle,” Physica 50, 308-316 (1970). [CrossRef]
  12. W. Wijngaard, “Guided normal modes of two parallel circular dielectric rods,” J. Opt. Soc. Am. 63, 944-950 (1973). [CrossRef]
  13. J. Limeres, M. L. Calvo, J. M. Enoch, and V. Lakshminarayanan, “Light scattering by an array of birefringent optical waveguides: theoretical foundations,” J. Opt. Soc. Am. B 20, 1542-1549 (2003). [CrossRef]
  14. M. L. Calvo and V. Lakshminarayanan, “Birefringent optical waveguides,” in Optical Waveguides: From Theory to Applied Technologies, M.L.Calvo and R.F.Alvarez-Estrada, eds. (CRC, 2007), pp. 38-96.
  15. R. Sammut, C. Pask, and A. W. Snyder, “Excitation and power of unbound modes within a circular dielectric waveguide,” Proc. Inst. Electr. Eng. 122, 25-33 (1975). [CrossRef]
  16. R. Sammut, “Effect of leaky modes on response of short optical fibers,” J. Opt. Soc. Am. 67, 1284-1285 (1977). [CrossRef]
  17. B. Vohnsen, I. Iglesias, and P. Artal, “Guided light and diffraction model of human-eye photoreceptors,” J. Opt. Soc. Am. A Opt. Image Sci. Vis 22, 2318-2328 (2005). [CrossRef] [PubMed]
  18. E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am. 51, 491-498 (1961). [CrossRef]
  19. J. A. Besley and J. D. Love, “Supermode analysis of fibre transmission,” IEE Proc.: Optoelectron. 144, 411-419 (1997). [CrossRef]
  20. A. W. Snyder and M. Hamer, “Light-capture area of a photoreceptor,” Vision Res. 12, 1749-1753 (1972). [CrossRef] [PubMed]
  21. A. W. Snyder and C. Pask, “The Stiles-Crawford effect: explanation and consequences,” Vision Res. 13, 1115-1137 (1973). [CrossRef] [PubMed]
  22. W. Fischer and R. Röhler, “Absorption of light in an idealized photoreceptor on basis of waveguide theory. I. Infinite dielectric cylinder,” Vision Res. 14, 1013-1019 (1974). [CrossRef] [PubMed]
  23. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  24. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302-307 (1966). [CrossRef]
  25. M. J. Piketmay, A. Taflove, and J. B. Troy, “Electrodynamics of visible light interactions with the vertebrate retinal rod,” Opt. Lett. 18, 568-570 (1993). [CrossRef]
  26. A. M. Pozo, F. Perez-Ocon, and J. R. Jimenez, “FDTD analysis of the light propagation in the cones of the human retina: an approach to the Stiles-Crawford effect of the first kind,” J. Opt. A, Pure Appl. Opt. 7, 357-363 (2005). [CrossRef]
  27. J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363-379 (1996). [CrossRef]
  28. M. Vorobyev, L. Fischer, A. Zvyagin, and T. Plakhotnik, “Polarization sensitivity in vertebrates: a computational approach,” in Polarization Conference, Heron Island (2008), p. 33.
  29. A. Hendrickson and D. Drucker, “The development of parafoveal and mid-peripheral human retina,” Behav. Brain Res. 49, 21-31 (1992). [CrossRef] [PubMed]
  30. R. Barer, “Refractometry and interferometry of living cells,” J. Opt. Soc. Am. 47, 545-556 (1957). [CrossRef] [PubMed]
  31. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).
  32. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497-523 (1990). [CrossRef] [PubMed]
  33. W. Wijngaard, “Mode interference patterns in retinal receptor outer segments,” Vision Res. 14, 889-893 (1974). [CrossRef] [PubMed]
  34. M. L. Calvo and V. Lakshminarayanan, “Initial field and energy flux in absorbing optical waveguides. I. Theoretical formalism,” J. Opt. Soc. Am. A 4, 1037-1042 (1987). [CrossRef] [PubMed]
  35. A. Ghatak and K. Thyagarajan, An Introduction to Fiber Optics (Cambridge Univ. Press, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited