OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 4 — Apr. 1, 2010
  • pp: 918–927

Signal representation on the angular Poincaré sphere, based on second-order moments

Martin J. Bastiaans and Tatiana Alieva  »View Author Affiliations


JOSA A, Vol. 27, Issue 4, pp. 918-927 (2010)
http://dx.doi.org/10.1364/JOSAA.27.000918


View Full Text Article

Enhanced HTML    Acrobat PDF (212 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on the analysis of second-order moments, a generalized canonical representation of a two-dimensional optical signal is proposed, which is associated with the angular Poincaré sphere. Vortex-free (or zero-twist) optical beams arise on the equator of this sphere, while beams with a maximum vorticity (or maximum twist) are located at the poles. An easy way is shown how the latitude on the sphere, which is a measure for the degree of vorticity, can be derived from the second-order moments. The latitude is invariant when the beam propagates through a first-order optical system between conjugate planes. To change the vorticity of a beam, a system that does not operate between conjugate planes is needed, with the gyrator as the prime representative of such a system. A direct way is derived to find an optical system (consisting of a lens, a magnifier, a rotator, and a gyrator) that transforms a beam with an arbitrary moment matrix into its canonical form.

© 2010 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(080.2730) Geometric optics : Matrix methods in paraxial optics
(080.2468) Geometric optics : First-order optics
(140.3295) Lasers and laser optics : Laser beam characterization
(080.4865) Geometric optics : Optical vortices
(080.5084) Geometric optics : Phase space methods of analysis

History
Original Manuscript: December 17, 2009
Manuscript Accepted: February 15, 2010
Published: March 31, 2010

Citation
Martin J. Bastiaans and Tatiana Alieva, "Signal representation on the angular Poincaré sphere, based on second-order moments," J. Opt. Soc. Am. A 27, 918-927 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-4-918


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  2. M. J. Padgett and J. Courtial, “Poincaré-sphere equivalent for light beams containing orbital angular momentum,” Opt. Lett. 24, 430-432 (1999). [CrossRef]
  3. G. S. Agarwal, “SU(2) structure of the Poincaré sphere for light beams with orbital angular momentum,” J. Opt. Soc. Am. A 16, 2914-2916 (1999). [CrossRef]
  4. G. F. Calvo, “Wigner representation and geometric transformations of optical orbital angular momentum spatial modes,” Opt. Lett. 30, 1207-1209 (2005). [CrossRef] [PubMed]
  5. T. Alieva and M. J. Bastiaans, “Orthonormal mode sets for the two-dimensional fractional Fourier transformation,” Opt. Lett. 32, 1226-1228 (2007). [CrossRef] [PubMed]
  6. T. Alieva and M. J. Bastiaans, “Phase-space rotations and orbital Stokes parameters,” Opt. Lett. 34, 410-412 (2009). [CrossRef] [PubMed]
  7. M. J. Bastiaans, “Application of the Wigner distribution function to partially coherent light,” J. Opt. Soc. Am. A 3, 1227-1238 (1986). [CrossRef]
  8. M. J. Bastiaans, “Second-order moments of the Wigner distribution function in first-order optical systems,” Optik 88, 163-168 (1991).
  9. J. Serna, R. Martínez-Herrero, and P. M. Mejías, “Parametric characterization of general partially coherent beams propagating through ABCD optical systems,” J. Opt. Soc. Am. A 8, 1094-1098 (1991). [CrossRef]
  10. K. Sundar, N. Mukunda, and R. Simon, “Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams,” J. Opt. Soc. Am. A 12, 560-569 (1995). [CrossRef]
  11. J. Williamson, “On the algebraic problem concerning the normal forms of linear dynamical systems,” Am. J. Math. 58, 141-163 (1936). [CrossRef]
  12. R. K. Luneburg, Mathematical Theory of Optics (Univ. of California Press, 1966).
  13. S. Helgason, Differential Geometry, Lie Groups and Symmetric Species (Academic, 1978), Chap. VI.
  14. K. B. Wolf, Geometric Optics on Phase Space (Springer, 2004).
  15. R. Simon and N. Mukunda, “Iwasawa decomposition in first-order optics: universal treatment of shape-invariant propagation for coherent and partially coherent beams,” J. Opt. Soc. Am. A 15, 2146-2155 (1998). [CrossRef]
  16. R. Simon and K. B. Wolf, “Structure of the set of paraxial optical systems,” J. Opt. Soc. Am. A 17, 342-355 (2000). [CrossRef]
  17. R. Simon and N. Mukunda, “Twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 10, 95-109 (1993). [CrossRef]
  18. R. Simon, K. Sundar, and N. Mukunda, “Twisted Gaussian Schell-model beams. I. Symmetry structure and normal-mode spectrum,” J. Opt. Soc. Am. A 10, 2008-2016 (1993). [CrossRef]
  19. K. Sundar, R. Simon, and N. Mukunda, “Twisted Gaussian Schell-model beams. II. Spectrum analysis and propagation characteristics,” J. Opt. Soc. Am. A 10, 2017-2023 (1993). [CrossRef]
  20. A. T. Friberg, B. Tervonen, and J. Turunen, “Interpretation and experimental demonstration of twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 11, 1818-1826 (1994). [CrossRef]
  21. D. Ambrosini, V. Bagini, F. Gori, and M. Santarsiero, “Twisted Gaussian Schell-model beams: a superposition model,” J. Mod. Opt. 41, 1391-1399 (1994). [CrossRef]
  22. R. Simon, A. T. Friberg, and E. Wolf, “Transfer of radiance by twisted Gaussian Schell-model beams in paraxial systems,” J. Eur. Opt. Soc. A: Pure Appl. Opt. 5, 331-343 (1996). [CrossRef]
  23. R. Simon and N. Mukunda, “Twist phase in Gaussian-beam optics,” J. Opt. Soc. Am. A 15, 2373-2382 (1998). [CrossRef]
  24. M. J. Bastiaans, “Wigner distribution function applied to twisted Gaussian light propagating in first-order optical systems,” J. Opt. Soc. Am. A 17, 2475-2480 (2000). [CrossRef]
  25. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying vortices,” Phys. Rev. A 56, 163-165 (1997). [CrossRef]
  26. M. S. Soskin, M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219-276 (2001). [CrossRef]
  27. J. Serna and J. M. Movilla, “Orbital angular momentum of partially coherent beams,” Opt. Lett. 26, 405-407 (2001). [CrossRef]
  28. A. Ya. Bekshaev, M. V. Vasnetsov, V. G. Denisenko, and M. S. Soskin, “Transformation of the orbital angular momentum of a beam with optical vortex in a astigmatic optical system,” JETP Lett. 75, 127-130 (2002). [CrossRef]
  29. A. Ya. Bekshaev, M. S. Soskin, and M. V. Vasnetsov, “Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of the light beams,” J. Opt. Soc. Am. A 20, 1635-1643 (2003). [CrossRef]
  30. T. Alieva and M. J. Bastiaans, “Evolution of the vortex and the asymmetrical parts of orbital angular momentum in separable first-order optical systems,” Opt. Lett. 29, 1587-1589 (2004). [CrossRef] [PubMed]
  31. M. J. Bastiaans and T. Alieva, “Moments of the Wigner distribution of rotationally symmetric partially coherent light,” Opt. Lett. 28, 2443-2445 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited