OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 1046–1059

Fast minimum variance wavefront reconstruction for extremely large telescopes

Eric Thiébaut and Michel Tallon  »View Author Affiliations


JOSA A, Vol. 27, Issue 5, pp. 1046-1059 (2010)
http://dx.doi.org/10.1364/JOSAA.27.001046


View Full Text Article

Enhanced HTML    Acrobat PDF (496 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present what we believe to be a new algorithm, FRactal Iterative Method (FRiM), aiming at the reconstruction of the optical wavefront from measurements provided by a wavefront sensor. As our application is adaptive optics on extremely large telescopes, our algorithm was designed with speed and best quality in mind. The latter is achieved thanks to a regularization that enforces prior statistics. To solve the regularized problem, we use the conjugate gradient method, which takes advantage of the sparsity of the wavefront sensor model matrix and avoids the storage and inversion of a huge matrix. The prior covariance matrix is, however, non-sparse, and we derive a fractal approximation to the Karhunen–Loève basis thanks to which the regularization by Kolmogorov statistics can be computed in O ( N ) operations, with N being the number of phase samples to estimate. Finally, we propose an effective preconditioning that also scales as O ( N ) and yields the solution in five to ten conjugate gradient iterations for any N. The resulting algorithm is therefore O ( N ) . As an example, for a 128 × 128 Shack–Hartmann wavefront sensor, the FRiM appears to be more than 100 times faster than the classical vector-matrix multiplication method.

© 2010 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(100.3190) Image processing : Inverse problems
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: November 30, 2009
Revised Manuscript: February 22, 2010
Manuscript Accepted: February 23, 2010
Published: April 13, 2010

Citation
Eric Thiébaut and Michel Tallon, "Fast minimum variance wavefront reconstruction for extremely large telescopes," J. Opt. Soc. Am. A 27, 1046-1059 (2010)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-5-1046


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Roddier, Adaptive Optics in Astronomy (Cambridge U. Press, 1999). [CrossRef]
  2. E. Gendron and P. Léna, “Astronomical adaptive optics. I. Modal control optimization,” Astron. Astrophys.  291, 337–347 (1994).
  3. M. Le Louarn, N. Hubin, M. Sarazin, and A. Tokovinin, “New challenges for adaptive optics: extremely large telescopes,” Mon. Not. R. Astron. Soc.  317, 535–544 (2000). [CrossRef]
  4. N. Hubin, B. L. Ellerbroek, R. Arsenault, R. M. Clare, R. Dekany, L. Gilles, M. Kasper, G. Herriot, M. Le Louarn, E. Marchetti, S. Oberti, J. Stoesz, J.-P. Véran, and C. Vérinaud, “Adaptive optics for extremely large telescopes,” in Scientific Requirements for Extremely Large Telescopes, Vol.  232 of IAU Symposium, P.A.Whitelock, M.Dennefeld, and B.Leibundgut, eds. (Cambridge U. Press, 2005), pp. 60–85.
  5. L. A. Poyneer, D. T. Gavel, and J. M. Brase, “Fast wave-front reconstruction in large adaptive optics systems with use of the Fourier transform,” J. Opt. Soc. Am. A  19, 2100–2111 (2002). [CrossRef]
  6. L. A. Poyneer, D. Dillon, S. Thomas, and B. A. Macintosh, “Laboratory demonstration of accurate and efficient nanometer-level wavefront control for extreme adaptive optics,” Appl. Opt.  47, 1317–1326 (2008). [CrossRef] [PubMed]
  7. D. G. MacMartin, “Local, hierarchic, and iterative reconstructors for adaptive optics,” J. Opt. Soc. Am. A  20, 1084–1093 (2003). [CrossRef]
  8. B. Le Roux, J.-M. Conan, C. Kulcsár, H.-F. Raynaud, L. M. Mugnier, and T. Fusco, “Optimal control law for classical and multiconjugate adaptive optics,” J. Opt. Soc. Am. A  21, 1261–1276 (2004). [CrossRef]
  9. B. L. Ellerbroek, “Efficient computation of minimum-variance wave-front reconstructors with sparse matrix techniques,” J. Opt. Soc. Am. A  19, 1803–1816 (2002). [CrossRef]
  10. C. R. Vogel, “Sparse matrix methods for wavefront reconstruction revisited,” Proc. SPIE  5490, 1327–1335 (2004). [CrossRef]
  11. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am.  70, 998–1006 (1980). [CrossRef]
  12. J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. (Springer Verlag, 2006).
  13. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, 1992).
  14. W. J. Wild, E. J. Kibblewhite, and R. Vuilleumier, “Sparse matrix wave-front estimators for adaptive-optics systems for large ground-based telescopes,” Opt. Lett.  20, 955–957 (1995). [CrossRef] [PubMed]
  15. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (SIAM, 1994). [CrossRef]
  16. L. Gilles, C. R. Vogel, and B. L. Ellerbroek, “Multigrid preconditioned conjugate-gradient method for large-scale wave-front reconstruction,” J. Opt. Soc. Am. A  19, 1817–1822 (2002). [CrossRef]
  17. L. Gilles, “Order-N sparse minimum-variance open-loop reconstructor for extreme adaptive optics,” Opt. Lett.  28, 1927–1929 (2003). [CrossRef] [PubMed]
  18. L. Gilles, B. L. Ellerbroek, and C. R. Vogel, “Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics,” Appl. Opt.  42, 5233–5250 (2003). [CrossRef] [PubMed]
  19. Q. Yang, C. R. Vogel, and B. L. Ellerbroek, “Fourier domain preconditioned conjugate gradient algorithm for atmospheric tomography,” Appl. Opt.  45, 5281–5293 (2006). [CrossRef] [PubMed]
  20. C. R. Vogel and Q. Yang, “Fast optimal wavefront reconstruction for multi-conjugate adaptive optics using the Fourier domain preconditioned conjugate gradient algorithm,” Opt. Express  14, 7487–7498 (2006). [CrossRef] [PubMed]
  21. L. Gilles, B. Ellerbroek, and C. Vogel, “A comparison of multigrid V-cycle versus Fourier domain preconditioning for laser guide star atmospheric tomography,” in Signal Recovery and Synthesis, OSA Topical Meetings, B.L.Ellerbroek and J.C.Christou, eds. (Optical Society of America, 2007), paper JTuA1.
  22. L. Gilles and B. L. Ellerbroek, “Split atmospheric tomography using laser and natural guide stars,” J. Opt. Soc. Am. A  25, 2427–2435 (2008). [CrossRef]
  23. R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media  2, 209–224 (1992). [CrossRef]
  24. D. L. Fried, “Least-squares fitting a wave-front distortion estimate to an array of phase-difference measurements,” J. Opt. Soc. Am.  67, 370–375 (1977). [CrossRef]
  25. E. Thiébaut, “Introduction to image reconstruction and inverse problems,” in NATO Science Series II., Mathematics, Physics and Chemistry, Vol. 198,R.Foy and F.-C.Foy, eds. (Springer, 2005), p. 397.
  26. J. Herrmann, “Phase variance and Strehl ratio in adaptive optics,” J. Opt. Soc. Am. A  9, 2257–2258 (1992). [CrossRef]
  27. A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (SIAM, 2005). [CrossRef]
  28. A. Tarantola and B. Valette, “Inverse problems = quest for information for information,” J. Geophys.  50, 159–170 (1982).
  29. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am.  55, 1427–1435 (1965). [CrossRef]
  30. G. Rousset, “Wavefront sensing,” in Adaptive Optics for Astronomy, Vol.  423 of Proceedings of NATO ASI Series C, D.M.Alloin and J.-M.Mariotti, eds. (Kluwer, 1993), pp. 115–137.
  31. N. Roddier, “Atmospheric wavefront simulation using zernike polynomials,” Opt. Eng. (Bellingham)  29, 1174–1180 (1990). [CrossRef]
  32. J. Skilling and R. K. Bryan, “Maximum entropy image reconstruction: general algorithm,” Mon. Not. R. Astron. Soc.  211, 111–124 (1984).
  33. C. Béchet, M. Tallon, and E. Thiébaut, “Comparison of minimum-norm maximum likelihood and maximum a posteriori wavefront reconstructions for large adaptive optics systems,” J. Opt. Soc. Am. A  26, 497–508 (2009). [CrossRef]
  34. C. Béchet, “Commande optimale rapide pour l’optique adaptative des futurs télescopes hectométriques,” Ph.D. dissertation (Ecole Centrale de Lyon, 2008).
  35. C. Béchet, M. Tallon, and E. Thiébaut, “FRIM: minimum-variance reconstructor with a fractal iterative method,” in Advances in Adaptive Optics II, Vol.  6272 of SPIE Conference, D.B. C. B. L.Ellerbroek, ed. (2006), p. 62722U.
  36. C. Béchet, M. Tallon, and E. Thiébaut, “Closed-loop AO performance with FrIM,” in Adaptive Optics: Analysis and Methods, Conference of the Optical Society of America (Optical Society of America, 2007), paper JTuA4.
  37. D. Munro, Yorick,http://yorick.sourceforge.net/http://yorick.sourceforge.net/.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited